• Title/Summary/Keyword: 암반 특성

Search Result 1,298, Processing Time 0.029 seconds

A Case Study of Collapse and Reinforcement for Large Span Waterway Tunnel at Thrust Fault Zone (스러스트 단층대에서의 대단면 수로터널 낙반 및 보강 사례)

  • Kim, Young-Geun;Han, Byeong-Hyun;Lee, Seung-Bok;Kim, Eung-Tae
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.251-263
    • /
    • 2011
  • The geomechanical characteristics of rock and the structural geological feature of the fault should be studied and examined for the successful construction of large-span tunnel. In this case study, that is a important case for the tunnel collapse and reinforcement during the construction for the waterway tunnel at large thrust fault zone in schist, we carried out geological and geotechnical survey for make the cause and mechanism of tunnel collapse. Also, we have designed the reinforcement and re-excavation for the safe construction for collapse zone and have carried out successfully the re-excavation and finished the final concrete lining.

Engineering Geological Characteristics of Sedimentary Rocks at Ulsan Area (울산지역 퇴적암류의 지질공학적 특성)

  • Kim, Kwang-Sik;Kim, Kwang-Yeom;Seo, Yong-Seok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 2007
  • Discontinuities developed in a sedimentary rock mass are the most important factor to determine mechanical properties of the rock mass. Parameters described discontinuities in rock mass generally connote heterogeneity and uncertainty. In this study, probabilistic statistics method was used to determine parameters of discontinuities quantitatively and objectively. The field survey was conducted at 33 sedimentary rock slopes in Ulsan area, according to the suggested methods for the quantitative description of discontinuities in rock mass(ISRM, 1978). The engineering geological characteristics of the sedimentary rocks at Ulsan area was determined as probability distribution function deduced by analyzing parameters of discontinuities.

A Study on the Numerical Analysis Variables of Rock Structures Subject to Dynamic Loads (동적 하중을 받는 암반 구조물의 수치해석 변수에 대한 고찰)

  • Ryu, Chang-Ha;Choi, Byung-Hee;Jang, Hyung-Su
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.10-18
    • /
    • 2018
  • The dynamic behaviour of the rock mass under the dynamic load is different from the static application of the maximum load of the same size. An experimental approach to investigating rock behavior under dynamic loads is more difficult than that under static conditions in control of dynamic loads, measurement and analysis of the results. Numerical methods are less constrained by performing the experiments numerically, rather than experimental ones, so they can be very powerful analytical tool at the design stage. However, even if the algorithms of the analysis method are appropriate, careful analysis is required because the calculation results may vary largely depending on input data and boundary conditions. In this paper, when investigating the behavior of rock structures under dynamic load numerically, the effects of boundary conditions, dynamic load and calculation time step, and dynamic load characteristics on the calculation results were reviewed to provide guidance on setting up boundary conditions and calculation time step related to dynamic analysis.

Hydrogeological Performance Assessment for Underground Oil Storage Caverns (지하유류비축시설 수리안정성 평가방안)

  • 김천수;배대석;김경수;고용권;송승호
    • The Journal of Engineering Geology
    • /
    • v.7 no.3
    • /
    • pp.229-245
    • /
    • 1997
  • There are Common aspects between the underground oil storage cavern and the radioactive waste disposal facility. Both facilities use appropriately the intrinsic natural berrier characteristics of the rock mass and additionally the engineered barrier system for the long term safety. The geological structures and their hydrogeological characteristics in a faactured rock mass act a major role in the safety and performance of the underground oil storage facility through the design, construction and the operation stages. Because the fracture system distributed in a fractured rock block is complicated owing to their own geometrical and hydrogeological attributes, the hydrogeological perforrmrnce of the facility would depend mainly upon the understandings of their characteristics. This study reviews the uncertainties and key issues which have to be considered to analyse the groundwater flow system in a fractured rock mass and proposes the techniques applicable to characterize the hydrogeological parameter.

  • PDF