• Title/Summary/Keyword: 암반터널

Search Result 1,982, Processing Time 0.027 seconds

Rock-support Interaction behavior for Ground Condition Based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.155-161
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rook-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These cures are very useful to predict the required support pressure in the initial design stage.

  • PDF

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbreak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.25-38
    • /
    • 2002
  • 터널 굴착선 여굴(Overbreak)은 발파공법에 의한 괄착 중에 필연적으로 발생하는 현상으로서 숏크리트, 라이닝 등의 보강비 추가 발생과 버력 처리량의 증대로 공기 및 공사비를 증가시키는 주요한 요인으로 작용한다. 또한 터널 굴착선 암반의 손상으로 균열층이 형성되거나 부석이 발생하여 안전문제를 야기시키기도 한다. 이러한 여굴 발생은 천공오차, 발파패턴의 오류, 잘못된 화약선정, 불규칙한 암반 특성 등에 그 원인이 있으나, 지금까지 터널 여굴은 천공 및 발파기술에 의해 좌우된다라는 인식이 대부분이었다. 그러나 여굴 발생에 중요한 원인으로 터널 굴착선 암반의 특성과 이에 적합한 발파패턴 및 화약류를 들 수 있다. 본 연구는 여굴 발생에 영향을 미치는 암반상태를 파악하기 위해서 터널 굴착선 주변암반의 균열정도, 강도, 불연속면의 간격, 방향, 간극, 충전물 상태 등의 6가지 요소를 이용하여 암반을 분류하는 발파암 분류법(BI)을 새로 제안하였고, 이 분류에 따라 외곽 공의 간격과 장약밀도를 달리 하는 발파패턴을 정립하였다. 또한 화약의 순폭도와 Air Deck 효과를 이용하여 장약밀도를 조절할 수 있는 N.D.C(New Deck Charge) 발파공법을 개발함으로써 여굴을 최소화할 수 있었다.

A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구)

  • Wye, Yong-Gon;No, Sang-Lim;Yoon, Ji-Son
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard, even by the experts of tunnel assessment owing to lack of investigation system. In this study, using multivariate analysis we presented rock mass rating system that is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, intact rock strength, orientation of discontinuities, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system.

  • PDF

A Study on the Evaluation of Famage Zone around Tunnel Induced by Blasting (발파에 의한 터널 주변 암반의 손상영역 평가에 관한 연구)

  • 장수호;신일계;최용근;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.129-140
    • /
    • 2000
  • 최근들어 핵폐기물 지하처분장을 중심으로 터널굴착에 의한 주변 암반의 손상상태와 암반특성의 변화를 정량적으로 평가하기 위한 시도가 이루어지고 있다. 이는 암반의 지지력을 적극적으로 이용하는 NATM개념에 의해 터널을 시공할 셩우 안정성 해석과 최적 보강설계를 위해 필수적인 사항으로 고려된다. 그러나 현재까지 암반 손상영역을 평가하기 위해 제시된 여러 방법들은 아직까지 그 적용성과 타당성이 충분히 검증되지 못한 실정이다. 이 연구에서는 코어시추, 실험실시험, 발파진동측정, 보어홀 카메라 등의 여러 방법에 의해 손상영역을 정량적으로 평가하고자 하였으며 가 방법의 적용성을 검토하였다. 암반상태 및 발파조건을 달리하여 시험발파를 수행하였으며 발파 후에 터널벽면에 수직하게 시추를 하여 암석코어를 채취한 뒤 손상정도에 따른 암석의 물리적, 역학적 특성들? 변화를 정량적으로 나타내고자 하였다. 코어 채취후 시축공에 보어홀 카메라를 사용하여 손상영역을 시각적으로 판별하고자 하였으며 발파진동 측정결과로부터 손상영역을 예측하고 채취한 암석시표에 대한 실험실시험 결과와 비교하여 적용성을 검토하였다.

  • PDF

Methodology to Quantify Rock Behavior in Shallow Rock Tunnels by Analytic Hierarchy Process and Rock Engineering Systems (계층 분석적 의사결정과 암반 공학 시스템에 의한 저심도 암반터널에서의 암반거동 유형 정량화 방법론)

  • Yoo, Young-Il;Kim, Man-Kwang;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.465-479
    • /
    • 2008
  • For the quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) by the analytic hierarchy process (AHP) and the Rock Engineering Systems (RES). AHP and RES can aid engineers in effectively determining complex and un-structured rock behavior utilizing a structured pair-wise comparison matrix and an interaction matrix, respectively. Rock behavior types are categorized as rock fall, cave-in, and plastic deformation. Seven parameters influencing rock behavior for shallow depth rock tunnel are determined: uniaxial compressive strength, rock quality designation (RQD), joint surface condition, stress, pound water, earthquake, and tunnel span. They are classified into rock mass intrinsic, rock mass extrinsic, and design parameters. An advantage of this procedure is its ability to obtain each parameter's weight. We applied the proposed method to the basic design of Seoul Metro Line O and quantified the rock behavior into RBI on rock fall, cave-in, and plastic deformation. The study results demonstrate that AHP and RES can give engineers quantitative information on rock behavior.

Safe tunneling method using numerical modeling of rock blocks in long tunnels (장대터널에서의 암반 블록의 수치 모델링을 이용한 터널 안전 시공법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Since about 70 percent of the territory is mountainous, more tunnels are constructed in Korea for maximizing the development efficiency. With the increasing number of tunnel construction, safe construction in tunnels has been emerged as the utmost important subject. Recently, the number of long tunnel construction is steeply increased because of the request for high speed and straight road. In this study, a safe tunneling method using numerical modeling of rock blocks in long tunnels is proposed, and then applied to the long tunnel based on real discontinuity information observed in situ. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the safe tunneling method using numerical modeling of rock blocks. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports.

Numerical Analysis for Shotcrete Lining at SCL Tunnel in NS2 Transmission Cable Tunnel Project in Singapore (싱가포르 케이블터널 프로젝트 NS2현장 SCL 터널에서의 숏크리트 라이닝의 변형거동 특성)

  • Kwang, Han Fook;Kim, Young Geun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.185-194
    • /
    • 2017
  • This technical paper is a study on the unique displacements of Shotcrete Lining at the mined tunnel during excavation period through deep consideration with real time data from monitoring instrumentations correlation with the numerical analysis to identify the rock stresses and the rock spring points at the working face of the Conventional tunnelling by the Drill and Blast, based on the geological face mapping results of the project NS2, Transmission cable tunnel project in Singapore. The created geometry of numerical model was prepared to the real mined tunnel construction site including, vertical shaft, construction adit, tunnel junction area, and 2 enlargement caverns. The convergence measurements by the monitoring instrumentation were performed during the tunnel excavation and shaft sinking construction stages to guarantee the safety of complicated underground structures.

An Assessment of Rock Pillar Behavior in Very Near Parallel Tunnel (초근접 병설터널의 암반 필라 거동 평가)

  • Kim, Won-Beom;Yang, Hyung-Sik;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • Focusing on the load tunnel, this study assessed the behavior of rock pillars with less than 0.5D of the minimized distance between the two horizontal tunnels by using a three dimensional numerical analysis. Based on a parameter affecting the behavior of rock pillars, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the pillar width increases, the current curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. Judging from the minimum safety factor, the study suggested a design chart, working on the minimized distance between the two horizontal tunnels.

A study on the correlation between the rock mass permeability before and after grouting & injection volume and the parameters of Q system in a jointed rock mass tunnel (절리 암반터널 내 그라우팅 전·후의 암반 투수계수 및 그라우팅 주입량과 Q 시스템 항목들과의 상관관계 연구)

  • You, Kwang-Ho;Jie, Hong-Keun;Seo, Kyoung-Won;Kim, Su-Jeong;You, Dong-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.617-635
    • /
    • 2012
  • In this study, correlations between the rock mass permeability before and after grouting & injection volume and the parameters of Q system were investigated on a grouted rock mass tunnel corresponding to rock class 4 and 5 in terms of Q classification system. As a result, it appears that the lower the Q value is, the higher the before-grouting permeability becomes and the smaller the injection volume of grouting becomes. Also RQD and Jn are the most influencing factors to the permeability of rock mass and the injection volume of grouting. In addition, it turned out that it was very difficult to lower the permeability of rock mass smaller than $1.0{\times}10^{-8}$ m/sec with the ordinary portland cement grout.

Analysis of Tunnel Behavior Using Progressive Rockmass Failure Technique (암반의 진행성 파괴 기법을 이용한 터널거동 분석)

  • 이성민;이윤규;신성렬
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.288-295
    • /
    • 1999
  • Concentrated stresses due to the underground tunnel excavation easily cause many problems such as yielding, popping, and failure at the immediate roof, wall and floor of tunnel. Therefore, it is very important to predict the possibility of these problems when a tunnel is excavated underground. There are two typical methods to predict these problems. The one is to predict problems from the analysis of field monitoring data and the other is to predict them from computer simulations using good site investment data. Using the second method, this study attempted to describe the time-dependent or progressive manner of immediate roof and wall due to the underground tunnel excavation. An iterative technique was used to represent progressive failure of rockmass with the Hoek and Brown theory. By developing and simulating three different shapes of twin tunnels, this research estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel walls, and convergences of tunnel crowns. Moreover, results out of progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF