• Title/Summary/Keyword: 암반절리

Search Result 514, Processing Time 0.022 seconds

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

Comparative Study on Stationary and Trolling Methods of Flowmeter in Fractured Rock Aquifer (암반대수층에서의 공내 유량측정기의 고정식 및 이동식 측정방법에 관한 비교 연구)

  • Jang, Ki-Young;Park, Hak-Yun;Kim, Tae-Hee;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.66-74
    • /
    • 2007
  • Stationary and trolling methods in measuring flow using flowmeter were adopted to investigate the hydraulic connectivity of fractures and to evaluate the applicability of the measurement methods. Stationary method was useful for identifying the inflow and outflow patterns in the measured section, which enabled us to analyze the hydraulic connectivity of fractures between the wells. Trolling method failed to find the inflow and outflow patterns in the well, but was very effective for locating the conductive fractures. Measuring flow in the borehole by both stationary and trolling methods was found to be very efficient for identifying conductive fractures and their hydraulic connectivity in fractured rock aquifer.

Estimation of Usable Cut-out Volume Considering the Structural and Engineering Properties of Rock Mass (암반의 구조적 및 공학적 특성을 고려한 가용절취량 산정)

  • 이창섭;홍관석;조태진
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Structural and geological engineering properties of the rock mass distributed in the Yokmang mountain area were investigated to detenninc the usable cut-out volume and quarrying efficiency. The study area is located in the southern tip of the Yangsan fault system which controls the geological structure of the Kvungsang basin. As a result, the study area is mainly composed of andesicic. rhyolitic. and granitic rocks of the Cretaceous Kyungsang Supergroup and a series of right-handed strike-slip faults is developed along NNE-SSW direction. These regional faults significantly affect the spatial and meclwnical characteristics of joints such as spacing, frequency, and compressive strength. The joint frequency is highest along the fault zones and decreases toward the remote region. Based on the geological information obtained from the field survey, the detailed structure of the Yokmang mountain was analyzed and the volume of the rock mass was assessed. Considering the minimum rock block size required for the construction of a coastal dumping site, potential cut-out volume is then estimated to be 4,018,000m$^3$ the volume % of which is 48% of Yokmang mountain including the soil and weathered rock and 61% of the unweathered rock mass.

  • PDF

Geological Environments and Deterioration Causes of the Buddhist Triad Cave in Gunwi, Korea (군위 삼존석굴의 지질환경과 훼손원인)

  • 황상구;김수정;이현우
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.407-420
    • /
    • 2002
  • The Buddhist Triad Cave in Gunwi (National treasure No. 109) consists of porphyritic biotite granite, and it has been deteriorated into microorganic smears, white films, brown rusts, granular decay, color changes, and joints by the same weathering factors as rain, moisture, temperature variation and microorganic living. Main origin is probably the rain that leaks into the cave along joints in Palgongsan granite, and then its moisture grows many microorganism and is frozen over during winter. The granites around the cave regularly develop two NEE and NWW joint sets that are conjugate to be a joint system. The NEE set extends far away with narrow joint spacings and affects the leakage of the rains, and is divided into 4 joint zones, among which J$_{m}$ and J$_{3}$ immediately affect the leaking water into the cave. An extensional Joint, in northern wall of the cave, was formed by toppling of the block between J$_{m}$and J$_{3}$joint zones from widening the Jm aperture by roots of a big pine tree, and passes through the J$_{m}$joint zone. This bypass allows no circulation of small rain, but a good circulation of heavy rain from influx to the cave for a long pathway. Many Joints and cracks, in the ceiling near the cave entrance, immediately get through the J$_3$ joint zone, and have a good circulation of small rain 10 mm. Both J$_{m}$and J$_{3}$ joint zones are, therefore, chief influxes that cause leakage of the rains.

암반절리와 시공단계를 고려한 지하 구조체의 해석

  • 김문겸;장정범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.179-194
    • /
    • 1991
  • This paper explains outline of a behavior analysis program for underground structures, and its application to a tunnel problem. The program can deal with elasto-plastic behavior of medium and supporting structures, discontinuous behavior due to existing joint, creation and propagation of cracks. in-situ loading condition, and incremental behavior due to stepwise excavation, etc. The program also has additional capabilities such as graphic output of mesh, displacement pattern, stress condition, and safety factor contour, and automatic mesh generation during the excavation steps.

  • PDF

The Study of Surface Geology at the Section 7 of Taegu-Pohang Highway (대구-포항간 고속도로 7공구 지역 지표지질 연구)

  • 이병주
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1999.03a
    • /
    • pp.69-71
    • /
    • 1999
  • 이 논문은 대구-포항 간 고속도로 건설공사 지역 중 제 7공구 지역에 대한 지반조사를 목적으로 실시한 지질조사의 결과다. 기존자료는 1대 5만 기계도폭(오인섭과 정국성, 1975)과 이 지역을 포함한 소위 가음단층대의 동부지역에 대한 지질구조를 조사를 연구한 이병주와 황재하(1997)의 논문 등이 있다. 야외에서의 지질조사는 개설될 고속도로를 중심으로 발달하는 노두에서 암상의 특징과 층리, 절리 및 단층 등과 같은 불연속면의 발달 특성을 관찰 기재하였다.(중략)

  • PDF

Basic Study on Shear Characteristics of Filled Rock Joint (충전된 절리면의 전단특성에 관한 기초연구)

  • 김용준;이영휘;도성규
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.318-326
    • /
    • 2004
  • In this study, a new direct shear apparatus was developed to investigate the shear characteristics of the rock joints at various conditions. Using the developed apparatus, various experiments on filled rock joints were carried out considering the asperity angle, the normal stress, the type and thickness of filling material and to investigated the basic shear characteristics of filled rock joints were analyzed. According to the experiments performed under the constant normal stress condition by varying the asperity angle, the type and thickness of filling material, it was shown that the behavior and strength of filled rock joint could be defined by the type and thickness of the filling material. The dilation angle of the filled joints was found to be smaller than that of unfilled rock joint, and thereby, the effect of roughness was also reduced due to the filling material. And critical thickness ratio varied according to stress level and roughness as well as the type of filing materials.

Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis (개별요소해석에서 절리강성이 블록 거동에 미치는 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.14-21
    • /
    • 2019
  • Distinct element method is a powerful numerical tool for modelling the jointed rock masses. It is also a useful tool for modelling of later stage of blasting requiring large displacement. The distinct element method utilizes a rigid block idea in which the interacting force between distinct elements is calculated from contact displacement as elements penetrate slightly. The properties of joints defined as the boundaries of distinct elements are critical parameters to determine the block behavior, and affect the deformation and failure mode. However, regardless of real joint properties, joint stiffnesses have sometimes been selected without special concern just to prevent elements from penetrating too far into each other in some quasi-static problems. Depending on whether the main interest in the analysis is the prediction of the deformation with high precision, or the prediction of the block behaviour after failure, the input data such as joint stiffness may or may not have a significant effect on the results. The purpose of this study is to provide a sound understanding of the effect of the joint stiffness on the distinct element analysis results, and to help guide the selection of input data.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF