• Title/Summary/Keyword: 암반분류 시스템

Search Result 43, Processing Time 0.017 seconds

The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter (공내재하시험을 이용한 암종별 변형계수와 RMR의 상관성)

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, correlation between measured deformation modulus using pressuremeter and RMR value conducted in 10 sites is analyzed, and applicability of the conventional empirical formulas to the rock masses in Korea are analyzed, It is found that if RMR is below 40, the correlation between deformation modulus and RMR accords Kim Gyo-won's formula and Aydan, Serafim and Pereira's one well, but if the RMR exceeds 40, the correlation was lower than those from the formula. Such results may be attribute to the fact that during classification of RMR, scores are weighed relatively more in joint conditions and apertures than such highly correlational items as uniaxial compression strength or RQD, and RMR would not be evaluated qualitatively due to different weathering degrees and rock mass types as well as engineers' personal errors. Sandstone among sedimentary rocks are quite well accord with suggested equation, but correlation of other rocks are due to large variance. In this study, correlation expressions of various rocks are proposed as the function of exponential based on the field test data.

Technological Development Trends for Underground Safety in Urban Construction (도심지 공사시 지하안전 확보를 위한 기술개발 동향)

  • Baek, Yong;Kim, Woo Seok
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.343-350
    • /
    • 2017
  • Amid increasingly saturated ground space, development of underground space has been booming throughout the world and excavation has been underway near the structure above or under the ground level. But the ground subsidence caused by improper or poor construction technologies, underground water leakage, sudden changes of stratum and the problem with earth retaining system component has been emerged as hot social issue. To deal with such problems nationwide, establishment of preventive and proactive disaster management and rapid restoration system has been pushed now. In this study, collection of the data on technology development trend to secure the underground safety was made, taking into account of internal change elements (changing groundwater level, damage to underground utilities, etc) and external change elements (vehicle load, earthquake and ground excavation, etc) during excavation. Amid the growing need of ground behavior analysis, ground subsidence evaluation technology, safe excavation to prevent ground subsidence and reinforcement technology, improvement of rapid restoration technology in preparation for ground subsidence and development of independent capability, this study is intended to introduce the technology development in a bid to prevent the ground subsidence during excavation. It's categorized into prediction/evaluation technology, complex detect technology, waterproof reinforcement technology, rapid restoration technology and excavation technology which, in part, has been in process now.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.