• Title/Summary/Keyword: 암반분류

Search Result 290, Processing Time 0.024 seconds

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Analysis of Subsurface Geological Structures and Geohazard Pertinent to Fault-damage in the Busan Metropolitan City (부산시 도심지의 지하 지질구조와 단층손상과 관련된 지질위험도 분석)

  • Son, Moon;Lee, Son-Kap;Kim, Jong-Sun;Kim, In-Soo;Lee, Kun
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.87-101
    • /
    • 2007
  • A variety of informations obtained from satellite image, digital elevation relief map (DEM), borehole logging, televiewer, geophysical prospecting, etc were synthetically analyzed to investigate subsurface geological and structural characteristics and to evaluate geohazard pertinent to fault-damage in the Busan metropolitan city. It is revealed that the geology is composed of the Cretaceous andesitic$\sim$dacitic volcanics, gabbro, and granitoid and that at least three major faults including the Dongrae fault are developed in the study area. Based on characteristics of topography, fault-fractured zone, and isobath maps of the Quaternary sediments and weathered residuals of the basement, the Dongrae fault is decreased in its width and fracturing intensity of damaged zone from south toward north, and the fault is segmented around the area between the Seomyeon and Yangieong junctions. Meanwhile, we drew a geohazard sectional map using the five major parameters that significantly suggest damage intensity of basement by fault, i.e. distance from fault core, TCR, RQD, uniaxial rock strength, and seismic velocity of S wave. The map is evaluated as a suitable method to express the geological and structural characteristics and fault-damaged intensity of basement in the study area. It is, thus, concluded that the proposed method can contribute to complement and amplify the capability of the present evaluation system of rock mass.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Cut Slopes (건설현장 절취사면의 산성암반배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu;Kim, Tack-Hyun;Ko, Kyung-Seok;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.91-99
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur mineral pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this paper the generation characteristics and the prediction of ARD of various cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Fourteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

A Study on the Correlations between the Physical Characteristics of Rock Types by Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 통한 암종별 물리적 특성간의 상관관계에 대한 연구)

  • Kim, Byong-Kuk;Lee, Byok-Kyu;Jang, Seung-Jin;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.673-686
    • /
    • 2018
  • The physical properties of rocks constituting the rock mass were analyzed by using various methods such as 7 kinds of physical properties of about 2,400 data. The correlation equation was derived from the correlation equation with the dependent variables by screening independent variables through the significance level using multiple regression analysis. In order to verify the reliability of this equation, verification was performed through comparison with actual data using artificial neural network learning. The analysis results by petrogenesis and strength confirmed that the elastic wave velocity (compressional wave) and elastic modulus as the main influence factors for the independent variables affecting the dependent variables. This proves that most of the correlation equations using the above items are found in existing studies. And through this study, it is confirmed whether the rock classification is based on the above items in various standards. In addition, the analysis results of representative rocks showed a high correlation as the equation for estimating unconfined compressive strength and elastic modulus exceeds the coefficient of determination 0.8.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

Biodiversity of Macrofauna at Subtidal Rocky Shore Around Uljin, Korea (울진 조하대 경성암반 해역 대형무척추동물의 생물다양성)

  • Lee, Jae Ho;Hwang, Kang Seok;Rho, Hyun Soo;Choi, Chang Geun
    • Journal of Marine Life Science
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2016
  • Macrofauna and community structure were investigated seasonally at five sites in subtidal zone of Uljin on the east coast of Korea from March 2010 to February 2013. A total of 146 species were collected and identified, including 67 molluscs, 27 arthropods, and 8,688 individuals, including 6,468 arthropods, 1,098 molluscs and 584 echinoderms. In the seasonal investigation, summer has been the highest in 96 species and 2,525 number of individuals. Site 4 was the highest species but number of individuals were the lowest (81 species with 1,377 number of individuals), whereas site 3 was the lowest species and number of individuals were the highest (45 Species with 2,213 number of individuals). These result indicate that Balanus species affected to richness and the other side a gastropod influence by diversity and evenness. And site 3 seems to be good habitate environment for Balanus as the result of 83.4% of Balanus rather than other sites.

Development of Site Classification System and Modification of Site Coefficients in Korea Based on Mean Shear Wave Velocity of Soil and Depth to Bedrock (기반암 깊이와 토층 평균 전단파속도를 이용한 국내 지반분류 방법 및 지반 증폭계수 개선)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Yoon, Jong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.63-74
    • /
    • 2008
  • Site response analyses were performed based on equivalent linear technique using the local geologic and dynamic site characteristics, which include soil profiles, shear wave velocity profiles and depth to bedrock for 125 sites collected in Korean Peninsula. From the results of site response analyses, 2-parameters site classification system based on the combination of mean shear wave velocity of soil and depth to bedrock was newly recommended for regions of shallow bedrock depth in Korea. First, as the borders of bedrock depth (H) for site classification were determined as 10m and 20m, the soil sites were divided into 3 classes as $H_1$, $H_2$ and $H_3$ sites. And then, the 3 site classes were subdivided into 7 classes based on the mean shear wave velocity of soil ($V_{s,soil}$). The feasibility of new site classification system was verified and the representative site coefficients ($F_a$ and $F_v$) and design response spectrum were suggested by analyzing uniform trend and dispersion of site coefficients for each site class. The suggested site coefficients and the regression curves present the nonlinear characteristics of soils according to the change of rock outcrop acceleration with uniform trend effectively. From the comparison between the mean values of response spectrum which was acquired from the site response analysis and the suggested design response spectrum, there was a little difference in some of site classes and it was verified to adjust the integration interval to make it more suitable for the site condition in Korea.

A Study on Classification of Bed rock over Antarctic Terra Nova Bay using Hyperspectral Image (초분광영상을 이용한 남극 제2기지 후보지에 대한 기반암 분류 연구)

  • Kim, Sun-Hwa;Kim, Tae-Hoon;Hong, Chang-Hee
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.55-61
    • /
    • 2010
  • This study was started for providing the application method of hyperspectral im age over extreme cold area as the Antarctic. Study area was Terra Nova Bay area which was decided as the candidate of 2nd Antarctic base station. For deciding last location of base station, many researchers tried to analyze the suitability of this study area. Among many suitability indicators, the location and stability of extracted bed rock area were very important. Using many spectral information of hyperspectral data, we tried detecting of bed rock and classifying four rock types. As additionally data, international spectral library of rock were used in this study. At the results, short-infrared wavelength bands were useful in the detection and classification of bed rock.

A Suggestion of the Modified Weighting Values of the RMR Parameters Using a Multiple Regression Analysis on Rock Slopes (암반사면을 대상으로 다변량 수량화 기법을 응용한 RMR 인자의 수정 가중치 제안)

  • Chae Byung-Gon;Kim Kwang-Sik;Cho Yong-Chan;Seo Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.85-96
    • /
    • 2006
  • This study was conducted to suggest a method to determine weighting values of each parameter of the RMR system considered with geologic characteristics of a study area. This study reviewed the weighting values of the RMR system for the Cretaceous sedimentary rocks distributed in Ulsan area. Based on the data of field survey at the study area, a multiple regression analysis was used to set up an optimal weighting values of the RMR parameters. For the multiple regression analysis, each parameter of the RMR and the slope gradient were regarded as the independent variable and the dependent variable, respectively. The analysis result suggested a modified weighting values of the RMR parameters as follows; 30 for the intact strength of rock; 18 for RQD; 8 for spacing of discontinuities; 32 for the condition of discontinuities; and 12 for ground water.