• Title/Summary/Keyword: 암반분류인자

Search Result 34, Processing Time 0.026 seconds

Quantification Method of Tunnel Face Classification Using Canonical Correlation Analysis (정준상관분석을 이용한 막장등급평가 수량화기법 연구)

  • Seo Yong-Seok;Kim Chang-Yong;Kim Kwang-Yeom;Lee Hyun-Woo
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.463-473
    • /
    • 2005
  • Because of using the same rating ranges for every rock types the RMR or the Q-system could not usually consider local geological characteristics They also could not present sufficiently the engineering anisotropy of rocks. The canonical correlation analysis was carried out with 3 kinds of face mapping data obtained from granite, sedimentary rock and phyllite in order to clarify a discrepancy between rock types. According to analysis results, as a type of rocks changes, RM factors have different influences on the total rating of RMR.

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

Homogenization Analysis for Calculating Elastic Modulus of Composite Geo-materials (복합지반물질의 탄성계수 산정을 위한 균질화 해석)

  • Seo Yong-Seok;Yim Sung-Bin;Baek Yong;Kim Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.227-233
    • /
    • 2006
  • Bedrock is inhomogeneous for its genetically diverse origins and geological conditions when it forms, and especially, conglomerates and core-stones are one of these typical composite geo-materials composed of weak matrixes and strong pebbles. Mechanical properties of these composite bedrocks, like a conglomerate, generally vary depending on the mechanical properties and distributions of pebbles and the matrix. Therefore, regarding the consequence of understanding mechanical property of bedrocks in the designing slopes, tunnels, and other engineering facilities, empirical rock classification methods generally applied in the mechanical property modeling may not be suitable and rather, we may need some other classification methods, or tests more specific for these inhomogeneous composite bedrocks. This study includes a series of analyses to see elastic behaviors and modulus of composite geo-materials using homogenization theory. Forty nine case models were made for the elastic analysis with considering 5 factors such as gravel content, gravel size, strength of matrix, sorting and dip angle. The results analyzed are applicable to calculate elastic modulus of composite geo-materials as conglomerates and core-stones.

Analysis of rock removal shape according to overlapping width of waterjet cutting (워터젯 절삭폭 중첩에 따른 암반제거 단면형상 분석)

  • Oh, Tae-Min;Park, Dong-Yeup;Park, Jun-Sik;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.167-181
    • /
    • 2021
  • New type of rock excavation method using a waterjet system is being developed to secure economic feasibility and to reduce vibrations during excavation. In waterjet rock excavation, overlapping of cutting width is essential for high efficiency. In this study, cutting experiments for granite specimens were performed using abrasive waterjet system according to the overlapping ratio and standoff distance. Based on the experimental results, the granite cutting performance was analyzed according to the overlapping ratio. In addition, removal shapes of the cross-section were analyzed in terms of the cutting depth, width, and volume after waterjet cutting. When the overlapping ratio is less than 58%, rock specimens are partially removed due to the insufficient overlapping ratio. However, when the overlapping ratio exceeds 67%, overcutting phenomenon is observed. For the partial overlapping ratio (i.e., 25~75%), cutting efficiency is increased in the removal volume. This study is expected to be used as the important basic data for determining the optimum overlapping ratio when the waterjet system is applied for rock excavation.

A Study on Classification of Bed rock over Antarctic Terra Nova Bay using Hyperspectral Image (초분광영상을 이용한 남극 제2기지 후보지에 대한 기반암 분류 연구)

  • Kim, Sun-Hwa;Kim, Tae-Hoon;Hong, Chang-Hee
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.55-61
    • /
    • 2010
  • This study was started for providing the application method of hyperspectral im age over extreme cold area as the Antarctic. Study area was Terra Nova Bay area which was decided as the candidate of 2nd Antarctic base station. For deciding last location of base station, many researchers tried to analyze the suitability of this study area. Among many suitability indicators, the location and stability of extracted bed rock area were very important. Using many spectral information of hyperspectral data, we tried detecting of bed rock and classifying four rock types. As additionally data, international spectral library of rock were used in this study. At the results, short-infrared wavelength bands were useful in the detection and classification of bed rock.

Risk Assessment with the Development of CAES (Compressed Air Energy Storage) Underground Storage Cavern (CAES(Compresses Air Energy Storage) 지하 저장 공동 개발에 따른 리스크 사정)

  • Yoon, Yong-Kyun;Seo, Saem-Mul;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.319-325
    • /
    • 2013
  • The objective of this study is to assess risks which might occur in connection with the storage of the highly compressed air in underground opening. Risk factors were selected throughout literature survey and analysis for the characteristic of CAES. Large risk factors were categorized in three components; planning and design phase, construction phase, and operation & maintenance phases. Large category was composed of 8 medium risk groups and 24 sub-risks. AHP technique was applied in order to analyze the questionnaires answered by experts and high-risk factors were selected by evaluating the relative importance of risks. AHP analysis showed that the operation & maintenance phases are the highest risk group among three components of large category and the highest risk group of eight medium risk groups is risk associated with the quality and safety. Risk having the highest risk level in 24 sub-risks is evaluated to be a failure of tightness security of inner containment storing compressed air.

Classification and Characterization for Water Level Time Series of Shallow Wells at the National Groundwater Monitoring Stations (국가지하수관측소 충적관측정의 수위 변동 유형 분류 및 특성 비교)

  • Kim, Gyoo-Bum;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.86-97
    • /
    • 2007
  • The principal component analysis was performed to identify the general characteristics of groundwater level changes from 202 deep and 112 shallow wells monitoring data, respectively, which came from the National Groundwater Monitoring Stations operated by KWATER with time spans of 156 continuous weeks from 2003 to 2005. Eight principal components, which accounted for 80% of the variability of the original time series, were extracted for water levels of shallow and deep monitoring wells. As a result of cluster analysis using the loading value of three principal components for shallow wells, shallow monitoring wells were divided into 3 groups which were characterized with a response time to rainfall (Group 1: 4.6 days, Group 2: 24.1 days, Group 3: 1.4 days), average long-term trend of water level (Group 1: $2.05{\times}10^{-4}$ m/day, Group 2: $-7.85{\times}10^{-4}$ m/day, Group 3: $-3.51{\times}10^{-5}$ m/day) and water level difference (Group 1 < Group 2 < Group 3). Additionally, they showed significant differences according to a distance to the nearest stream from well (Group 3 < Group 2 < Group 1), topographic slope of well site (Group 3: plain region, Group 1: mountainous region) and groundwater recharge rate (Group 3 < Group 2 < Group 1) with a p-value of 0.05.

Prediction of Rock Fragmentation and Design of Blasting Pattern based on 3-D Spatial Distribution of Rock Factor (발파암 계수의 3차원 공간 분포에 기초한 암석 파쇄도 예측 및 발파 패턴 설계)

  • Shim Hyun-Jin;Seo Jong-Seok;Ryu Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.264-274
    • /
    • 2005
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost which is generally estimated according to rock fragmentation. Therefore it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground levels is provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

A Study on the Correlations between the Physical Characteristics of Rock Types by Multiple Regression Analysis and Artificial Neural Network (다중회귀분석 및 인공신경망을 통한 암종별 물리적 특성간의 상관관계에 대한 연구)

  • Kim, Byong-Kuk;Lee, Byok-Kyu;Jang, Seung-Jin;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.673-686
    • /
    • 2018
  • The physical properties of rocks constituting the rock mass were analyzed by using various methods such as 7 kinds of physical properties of about 2,400 data. The correlation equation was derived from the correlation equation with the dependent variables by screening independent variables through the significance level using multiple regression analysis. In order to verify the reliability of this equation, verification was performed through comparison with actual data using artificial neural network learning. The analysis results by petrogenesis and strength confirmed that the elastic wave velocity (compressional wave) and elastic modulus as the main influence factors for the independent variables affecting the dependent variables. This proves that most of the correlation equations using the above items are found in existing studies. And through this study, it is confirmed whether the rock classification is based on the above items in various standards. In addition, the analysis results of representative rocks showed a high correlation as the equation for estimating unconfined compressive strength and elastic modulus exceeds the coefficient of determination 0.8.

A Numerical Analysis on the Determination of Shock Loss Coefficient at Flared Intersection of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 확폭구간에서의 충격손실 계수 결정을 위한 수치해석 연구)

  • Park, Yo Han;Lee, Seung Jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.111-124
    • /
    • 2018
  • The purpose of this study is to analyze ventilation design factor for network-type double-deck road tunnel that have been developed actively around the world. A numerical analysis was carried out through computational fluid dynamics (CFD) to derive shock loss coefficient that occurs due to the change in cross sectional area at both merging section and diverging section. The model used for the numerical analysis is real-scale model and the reliability of the result is secured by comparing with the coefficient of the previous studies. As a result of this study, shock loss coefficient was calculated depending on the change in cross-sectional area ratio and was higher than the result of previous studies in case of both merging section and diverging section. It is considered that the characteristics of the geometrical structure of network-type double-deck road tunnel have a great impact on shock loss coefficient. Therefore, the result of this study is expected to be helpful for more accurate ventilation design of network-type double-deck road tunnel.