• Title/Summary/Keyword: 암모니아 냉동기

Search Result 24, Processing Time 0.018 seconds

Performance Analysis of 2-Stage Compression and 1-Stage Expansion Refrigeration System using Alternative Natural Refrigerants (암모니아 대체 자연냉매를 이용하는 2단압축 1단팽창 냉동시스템의 성능예측)

  • Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.42-47
    • /
    • 2012
  • In this paper, alternative natural refrigerant R290(Propane), R600(Butane), R717(Ammonia), R1270(Propylene) for freon refrigerant R22 were used working fluids for 2-stage compression and 1-stage expansion refrigeration system. The operating parameters considered in this study included evaporation temperature, condensation temperature, subcooling degree, superheating degree, mass flow rate ratio of inter-cooler. The main results were summarized as follows : The COP of 2-stage compression and 1-stage expansion refrigeration system increases with the increasing subcooling degree and mass flow rate ration of inter-cooler, but decreases with the increasing evaporating temperature, condensing temperature and superheating degree. Therefore, subcooling degree, mass flow rate ratio of inter-cooler of 2-stage compression and 1-stage expansion refrigeration system using natural refrigerants have an effect on COP of this system. The COP of natural refrigerants was higher than the COP of freon R22 in this study, so points to be considered are the security, the attached facilities for natural refrigerants than COP.

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Next generation absorption technologies in USA and Japan(2) - Next generations technologies in Japan - (미국 및 일본의 차세대 홉수식 열펌프 기술(2) - 일본의 차세대 흡수식 연구동향 -)

  • 강용태
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.4
    • /
    • pp.300-314
    • /
    • 1999
  • 가스구동 흡수식 시스템은 인류와 환경에 여러 가지 유익을 가져다준다. 첫째, 시스템의 고효율에 따른 매력적인 경제성을 제공하고, 둘째 천연가스의 사용으로 인하여 여름철 피크 전력소요(peak electric demand)를 완화하고, 셋째 이산화탄소 ($CO_2$)의 발생을 감소시킴으로써 지구 온난화 현상을 완화한다 실제로 가스구동 흡수식 시스템으로부터의 $CO_2$발생량은 증기보일러를 사용하는 전기구동 냉동기에 비하여 85% 수준인 것으로 보고되었다(Suzuki 등). 넷째로 암모니아 및 물과 같은 환경 친화적인 냉매들을 사용함으로서 오존층을 파괴하는 Chlorofluorocarbon(CFC) 및 Hydrochlorofluorocarbon(FCFC)계 냉매들을 대체할 수 있는 이점이 있다.

  • PDF

Simulation and Experimental Study on an Air-Cooled $NH_3/H_2O$ Absorption Chiller (공랭형 $NH_3/H_2O$ 흡수식 냉동기의 모사 및 실험적 연구)

  • Oh Min Kyu;Kim Hyun Jun;Kim Sung Soo;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1034
    • /
    • 2005
  • The objective of this paper is to study the effects of the cooling air mass flow rate and the heat input variation by the simulation and the experiment. An air-cooled $NH_3/H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect machine is 17.6 kW (5.0 USRT). The overall conductance (UA) of each component, the cooling capacity, coefficient of performance and each state point are measured with the variation of the cooling air mass flow rate and the heat input. It is found that the COP and cooling capacity increase and then decreases with increasing the heat input. It is also found that the COP and the cooling capacity increase and keep constant with increasing the cooling air mass flow rate. The maximum COP is estimated as 0.51 and the optimum cooling air mass flow rate is $217\;m^3/min$ from the present experiment.