• Title/Summary/Keyword: 암모니아용출

Search Result 45, Processing Time 0.019 seconds

The Efficiency of Fe Removal Rate from Gold Ore in the Oxidation Zone by Ammonia Leaching (암모니아 용출에 의한 산화대 금 광석으로부터 Fe 제거 효율에 관한 연구)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.113-122
    • /
    • 2016
  • This study aims to improve the recovery of gold and silver by removing hematite from gold ore of an oxidation zone with ammonia solution. Quartz, hematite and muscovite were present in the oxidation zone, while hematite was hydrogenous. As a result of performing an ammonia leaching test on variables, it is found that the maximum Fe leaching parameter was $-45{\mu}m$ particle size, 1.0 M sulfuric acid concentration, 5.0 g/l ammonium sulfate concentration and 2.0 M hydrogen peroxide concentration. It is also confirmed that goethite was precipitated and formed from that ammonia elution. As the amount of Fe-removal was increased in a solid-residue, the recovery of Au and Ag were increased, too.

The Geochemical Interpretation of Phase Transform and Fe-leaching Efficiency for Pyrite by Microwave Energy and Ammonia Solution (마이크로웨이브 에너지에 의한 황철석의 상변환과 암모니아 용액에 의한 Fe-용출 효율에 관한 지구화학적 해석)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.139-150
    • /
    • 2013
  • In order to effectively leach Fe from pyrite, the application of microwave energy and ammonia solution has been conducted. Pyrite transforms into hematite and pyrrhotite when treated with microwave radiation for 60 minutes, and in this time the highest amount of Fe was leached by the ammonia solution. Up to 99% of the Fe was leached when the experimental conditions were: 325-400 mesh particle size for the pyrite and 60 min. was the microwave exposure time. The ammonia leaching conditions were 0.3 M sulfuric acid, 2.0 M ammonium sulfate and 0.1 M hydrogen peroxide concentration. The pyrite, hematite, and pyrrhotite were not detected using XRD analysis from the solid-residues treated by the ammonia solution except for quartz.

Benthic Fluxes of Ammonia and Lead in Lake Shihwa (시화호에서 암모니아와 납의 저층용출)

  • Han, Myong-Woo;Park, Yong-Chul;Huh, Sung-Hoi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 1997
  • A 12-cm long sediment core was collected from a station in Lake Shihwa where high salinity-anoxic deep water is isolated from low salinity-oxic surface water by a strong halocline barrier. Unprecedented concentrations of porewater ammonia and lead are encountered: at 9 cm sediment depth ammonia builds up to 1420 ${\mu}M$ and at 3 cm lead to 1348 nM. As they are stable in anoxic condition, high concentrations of ammonia and lead suggest a development of notorious anoxic condition in the benthic environment of the lake. The degree of pollution of the deep water is likely to be directly proportional to the magnitude of benthic flux, because the deep water is isolated from the surface water by the halocline. Apparent coincidence of the ammonia residence time in the deep water with the elapsing time after the completion of the artificial lake construction, as about three years, suggests that the deep water pollution is being progressed entirely by benthic flux at least with respect to ammonia. The residence time for lead is such a short 20 days that it suggests a rapid return of the bottom water lead, which is originated from porewater by benthic flux, back to sediments probably as metal sulfide phases. The speculation on the return of lead as sulfide phases is likely to be supported by high concentration of hydrogen sulfide in the deep water and by high sinking rate of non-organic particles in Lake Shihwa.

  • PDF

Enhancing Enzymatic Saccharification of Corn Stover by Aqueous Ammonia Soaking Pretreatment (옥수수 줄기의 암모니아수 침지 전처리에 의한 효소 당화 향상)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Cho, Nam-Seok;Han, Sim-Hee;Kim, Mun-Sung;Park, Jong-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.381-387
    • /
    • 2009
  • Enhancing enzymatic saccharification of corn stover by aqueous ammonia soaking pretreatment was investigated on chemical compositional changes and enzymatic hydrolysis characteristics. At three different levels of aqueous ammonia soaking temperature and time ($140^{\circ}C$-1 h, $90^{\circ}C$-16 h and $50^{\circ}C$-6 days), higher temperature and shorter treatment time led to more xylan and lignin removal based on overall composition analysis and carbohydrate compositional analysis. More xylan and lignin removal in higher temperature treatment led to higher enzymatic saccharification of cellulose and xylan to monosaccharide by commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 from Novozyme, Denmark).

Assessment for Effect of Water Environment by Addition of Improvement Agents on Sediments (저질 개선제의 주입에 의한 수 환경에 미치는 영향 평가)

  • Kim Woo-Hang;Kim Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.69-73
    • /
    • 2004
  • Control if Sediment is very important in prawn farm due to the eruption of toxic materials such as unionized $H_{2}S,\;NH_{3}\;and\;NO_3$. In this study, column test was conducted with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment. ammonia-N($NH_3$) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion($NH_4^+$) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of $NH_4^+$, which is not toxic for prawn because oyster shell was stably kept at $8{\sim}9g$ of pH. Therefore, some of ammonia($NH_4^+$) was removed by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Reduction of nitrogen loss in aerobic composting process using phosphorus-bearing waste (인 함유 폐기물을 활용한 퇴비화 공정에서의 질소 손실 저감)

  • Song, Young Hak;Lee, Dong Min;Baek, Kyung Min;Jeong, Yeon-Koo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.54-62
    • /
    • 2011
  • This study was undertaken to investigate the effects of bone waste on the conservation of nitrogen in aerobic composting process by inducing the struvite crystallization, which was known as a powerful method for conservation of nitrogen in composting reaction. Bone waste was dried at oven and crushed to less than 3 mm prior to use. It was found phosphorus content in bone waste was about 20.9% of the fixed solids from the leaching experiments using sulfuric acid. Addition of seed compost affected the progress of composting reaction substantially. In case seed compost was not used, the duration of initial low pH was greater than seed compost was added. This prolonged acidic pH may have a beneficial effect on the leaching of P from the bone waste and struvite crystallization. The struvite crystallization and resulting conservation of nitrogen by addition of bone waste was confirmed by both reduction in ammonia loss and increased ammonia content in compost. However the level of struvite crystallization observed with bone waste addition may be less than the cases water-soluble phosphate salts were used.

Maturity Evaluation of Food Waste Compost through Water Extracts Analysis (물용출성분 분석에 의한 음식쓰레기 퇴비의 숙성도 평가)

  • Cheong, Jun-Gyo;Hwang, Eui-Young;Choi, Jung-Young;Namkoong, Wan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1996
  • Qualititative changes in water extracts during food waste composting were studied in order to identify parameters that can be used as indicaters of compost maturity. Materials used in this study were food wastes, office paper, newspaper and leaves. Three different compositions of food wastes were used : average composition food waste generated in Korea, a high cereal (carbohydrate) content food waste and a high meat (protein) content food waste. Experimental results indicated that parameters which can be used for compost maturity evaluation were water soluble TOC and water soluble $C_{org}/N_{org}$ ratio. In case of water soluble TOC, it is considered as one of the most desirable parameters, since it showed quite distinct decrease pattern than any other parameters. The $C_{org}/N_{org}$ ratio in the water extracts can also be considered as a appropriate index of the compost maturity since this ratio reached a narrow range (5~6) at the end of composting process regardless of initial raw waste compositions. Water soluble TKN was undesirable parameter as a compost maturity index. The ammonia nitrogen content in water extracts varied considerably during composting process, but finally reached a range of 0.067, 0.085% based on dry compost.

  • PDF

Analysis of the Benthic Nutrient Fluxes from Sediments in Agricultural Reservoirs used as Fishing Spots (낚시터로 활용중인 농업용 저수지의 퇴적물 내 영양염류 용출 분석)

  • Joo, Jin Chul;Choi, Sunhwa;Heo, Namjoo;Liu, Zihan;Jeon, Joon Young;Hur, Jun Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.613-625
    • /
    • 2017
  • For two agricultural reservoirs that are rented for fishing spots, benthic nutrient fluxes experiment were performed two times with two sediments from fishing-effective zone and one sediment from fishing-ineffective zone using laboratory core incubation in oxic and anoxic conditions. During benthic nutrient fluxes experiment, the changes in DO, EC, pH, and ORP in the supernatant were not significantly different between fishing-effective zone and fishing-ineffective zone, and were similar to the sediment-hypolimnetic diffused boundary layer in agricultural reservoir. Except for $NO_3{^-}-N$, more benthic nutrient fluxes of $NH_4{^+}-N$, T-P, and $PO{_4}^{3-}-P$ from sediment to hypolimnetic was measured in anoxic than in oxic conditions (p<0.05). As the DO concentration in hypolimnetic decreases, the microorganism-mediated ammonification is promoted, the nitrification is suppressed, and finally the $NH_4{^+}-N$ diffuses out from sediment to hypolimnetic. Also, the diffusion of T-P and $PO{_4}^{3-}-P$ from sediments to hypolimnetic is accelerated through the dissociation of the phosphorus bound to both organic matters and metal hydroxides. The difference in the benthic nutrient diffusive fluxes between fishing-effective zone and fishing-ineffective zone was not statistically significant (p>0.05). Therefore, it was found that fishing activities did not increase the benthic nutrient diffusive fluxes to a statistically significant level. Due to the short fishing activities of 10 years and the rate-limited diffusion of the laboratory core incubation, the contribution of fishing activities on sediment pollution is estimated to be low. No significant correlation was found between the total amount of nutrients in sediment and the benthic nutrient diffusive fluxes in both aerobic and anaerobic conditions. Therefore, nutrients input from various nonpoint sources of watersheds are considered to be a more dominant factor rather than fishing activities in water quality deterioration, and both aeration and water circulation in hypolimnetic were required to suppress the anoxic environment in agricultural reservoirs.

Relation between Leaching Characteristics of the positive Ions and Phosphate Removal by granular Converter Slag for the different Conditions and Concentrations of Phosphate (인산염 농도와 폐수조건 변화에 따른 입상 전로슬래그의 양이온 용출 특성과 인산염 제거의 관계에 관한 연구)

  • Lee, In-Gu;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.372-379
    • /
    • 2007
  • The converter slag can be used to remove phosphate ion into the form of solid state from the wastewater. This research aims to evaluate the change of pH, alkalinity, leaching of positive ion in the wastewater and the removal of phosphate from the initial condition of wastewater. The change of pH was abruptly increased upto pH 11 for the initial condition of pH from 7.0 to 8.5 fer 0.5 unit of pH. The alkalinity was steadily increased from 10 hours of reaction time not same as pH increase. The removal of phosphate was very effective till 10 hours of reaction then it was slow after that time. The positive ion, magnesium ion was leached from the concentration of 2.0 mg/L to 4.3mg/L at the reaction time of 27 hours and 36 hours. Therefore, converter slag can be used to remove the phosphate in the form of Struvite from the wastewater.

  • PDF

The Efficiency of Fe Removal for Pyrophyllite by Ammonia Leaching Solution, and Their Dissolution Kinetics (암모니아 용출용액을 이용한 저 품위 엽납석으로부터 Fe 제거 효율과 용해 동역학)

  • Kim, Bong-Ju;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.53-62
    • /
    • 2014
  • In order to remove Fe impurity from low-grade pyrophyllite ore, the effect of certain variables such as particle size, concentration of sulfuric acid, amount of ammonium sulfate, added hydrogen peroxide, and temperature were studied. The euhedral cubic pyrites were observed in the low-grade pyrophyllite ore by reflected light microscopy, and quartz and dickite were identified in the sample by XRD analysis. The results of the Fe removal experiments showed that the best Fe removal parameters were when the particle size was at -325 mesh, the addition of $H_2SO_4$, $(NH_4)_2SO_4$ and $H_2O_2$ was at a 2.0 M, 10.0 g/l, and 3.0 M concentration, respectively, and at a $70^{\circ}C$ leaching temperature. In the dissolution kinetics analysis, the dissolution of Fe from the pyrite surface was a controlled chemical reaction, and the Fe dissolution reaction was proportioned to 0.066/R, $[H_2SO_4]^{1.156}$, $[(NH_4)_2SO_4]^{0.745}$, $[H_2O_2]^{0.428}$.