• Title/Summary/Keyword: 알코올류

Search Result 202, Processing Time 0.03 seconds

Improvement on the Functional Properties of the Dover Sole Skin Gelatin by Further Ethanol Fractional Precipitation (알코올처리에 의한 찰가자미류껍질 젤라틴의 기능성 개선)

  • Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.129-134
    • /
    • 1995
  • With a view to utilizing effectively fish skin wasted from marine manufactory, an extracted dover sole skin gelatin was fractionated by further ethanol fractional precipitation method, and then the functional and physicochemical properties for the modified gelatin were determined. Ethanol was added to the concentration of 30% in an extracted dover sole skin gelatin solution, and then the mixture was left to stand at $0^{\circ}C$ for 12 hours. Finally, the precipitates were dried by hot-air$(40^{\circ}C)$ blast. The yellowfin sole skin gelatin prepared by further ethanol fractional precipitation has 223.0 g in gel strength, $17.7^{\circ}C$ in the melting point, and $12.0^{\circ}C$ in the gelling point. The physicochemical properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol adding, whereas inferior to those of animal skin gelatin. The functional properties of the ethanol treated fish skin gelatin were superior to those of fish skin gelatin prepared without ethanol adding, and were more similar to animal skin gelatin. It may be concluded, from these results, that the dover sole skin gelatin prepared by further ethanol fractional precipitation can be effectively utilized as a human food by improving the functional properties.

  • PDF

Studies on the Volatile Flavor Components and Biochemical Characterizations of Artemisia princeps and A argyi (강화쑥의 생화학적 특성 및 휘발성 향기성분에 관한 연구)

  • Choi Byung-Bum;Lee Hye-Jeong;Bang Sun-Kwon
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.334-340
    • /
    • 2005
  • This study has attempted to examine the effect of Artemisia princeps and A. argyi on liver function-related enzymes in rats with $CCl_4$ adminisration. The activities of serum aspartate aminotransferase(AST), alanine aminotransferase(ALT) and alkaline phosphatase(ALP) from A. princeps were decreased by 33, 23 and $19\%$, respectively, compared to control. The activities of AST, ALT and ALP from A. argyi were decreased by 37, 33 and $26\%$, respectively. Total phenol contents were 10.2 mg/mL and 4.7 mg/mL in A. princeps, and A. argyi, respectively. Also, flavonoid contents were $6.1\;mg\%\;and\;3.6\;mg\%$ in A. princeps, and A. ar효i, respectively. Ethanol extract from A. argyi showed higher electron donating ability toward DPPH than A. princeps. A total of 31 volatile components(3 hydrocarbons, 10 terpenes, 5 carbonyls, 8 alcohols and 5 esters) were indentified in A. princeps, and A. argyi. The major volatile components of A. princeps were $\delta$-3-carene($2.2\%$) in terpenes and nerolidol($0.9\%$) in alcohols. The major volatile components of A. argyi were eugenol($1.4\%$) in alcohols and thyl pentadecanoate($1.1\%$) in esters.

Synthesis of Quinoxaline Derivatives from Benzofuroxan (Part I) (Benzofuroxan으로부터 Quinoxaline 유도체의 합성(제1보))

  • Kim, Ho-Sik;Hur, Jae-Hyuck
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.385-393
    • /
    • 2004
  • 2-Ethoxycarbonyl-3-methylquinoxaline 1,4-dioxide (8) was synthesized from benzofuroxan and ethyl acetoacetate. The reaction of compound 8 with hydrazine hydrate or selenium dioxide gave 2-hydrazinocarbonyl-3-methylquinoxaline 1,4-dioxide (9) or 2-ethoxycarbonyl-3-formylquinoxaline 1,4-dioxide (10), respectively. The reaction of compound 9 with alkanoyl chlorides, benzoyl chlorides, heteroacyl chlorides, and benzenesulfonyl chlorides afforded 3-methyl-2-(substituted hydrazinocarbonyl)quinoxaline 1,4-dioxides (11-14), respectively. The reaction of compound 9 with sodium azide gave 2-azidocarbonyl-3-methylquinoxaline 1,4-dioxide (15), and then its refluxing in dioxane/alcohols resulted in the Curtius rearrangement to give N-(3-methyl-1,4-dioxoquinoxalin-2-yl)-alkyl carbamates (16). The reaction of compound 15 with substituted anilines afforded 2-(3-substituted phenylureido)-3-methylquinoxaline 1,4-dioxides (17). The reaction of compound 10 with benzoic hydrazide or substituted anilines provided quinoxaline 1,4-di-oxides (18, 19), respectively. The herbicidal and fungicidal activities of the synthesized compounds were investigated.

Effect of Additives on Physical Properties of Dover Sole Skin Gelatin Prepared by Ethanol Fractional Precipitation (에탄올처리 찰가자미류껍질 젤라틴의 물리적 특성에 대한 첨가물의 영향)

  • Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.330-333
    • /
    • 1995
  • Effects of additives on physical properties of dover sole skin gelatin prepared by fractional precipitation with ethanol were investigated to obtain basic data for utilizing as food protein source. Physical properties such as gel strength, melting point, gelling point and viscosity of both ethanol- and non-treated gelatins were improved as ferric ion, sugar and ethanol were added to gelatin sol, but were deteriorated as sodium hydroxide and acids were added. Insignificant difference in effects of physical properties on additives such as ferric ion, sodium chloride, sugar, acids and ethanol between ethanol- and non-treated gelatins were not observed.

  • PDF

Effect of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Hepatic Mitochondrial ATPase Activity and Membrane Lipid Composition in Rats (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐 간 미토콘드리아 ATPase 활성도와 막지질 조성에 미치는 영향)

  • 김정희;류선영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.867-873
    • /
    • 1995
  • This study was done ot investigate the effect of chronic alcohol feeding and acetylaminofluorene(2-AAF) treatment on hepatic mitochondrial ATPase activity andmembrane lipid composition. Male Sprague-Dawley rats, weighing 120~125g, were fed for 6 weeks on a liquid diet containing 35% of calories as ethanol. After 4 weeks of experiment diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Body weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic mitochondrial ATPase activity significantly decreased by ethanol feedings but not by 2-AAF treatment. In comparison to control, the ATPase activity of ethanol-AAF group decreased 29.3%. Since phospholipid(PL) content of mitochondria has an interaction effect between ethanol and 2-AAF treatment, 2-AAF treatment significantly increased phospholipid content in only ethanol fed group. Total cholesterol(C) level of mitochondria significantly increased by ethanol feeding. Consequently C/PL ratio of ethanol group was significantly higher than that of control group. The analysis of mitochondrial PL composition showed that cardiolipin(CL) significantly increased by 2-AFF treatment in control group. Phosphatidyl choline(PC) significantly increased by ethanol feeding, whereas PC significanlty decreased and phosphatidyl ethanolamine(PE) significantly increased by 2-AAF treatment. 2-AAF treatment also showed a significant increase in PE/PC ratio. Fatty acid patterns of mitochondria were also changed by either ethanol or 2-AAF although the severity of the changes was not great. These data suggest that the reduced mitochondrial ATPase activity in ethanol-AAF group may be a consequence of a changes in mitochondrial membrane lipid composition such as PE/PC ratio, C/PL ration and fatty acid patterns.

  • PDF

A Study for Kinetics and Oxidation Reaction of Substituted Benzyl Alcohols Using Cr(VI)-6-Methylquinoline (Cr(VI)-6-Methylquinoline을 이용한 치환 벤질 알코올류의 산화반응과 속도론에 관한 연구)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.372-376
    • /
    • 2015
  • 6-MQCC (Cr(VI)-6-methylquinoline) complex was synthesized by the reaction of 6-methylquinoline with chromium(VI) trioxide in 6 M HCl. The structure was characterized using IR (Infrared Spectroscopy) and ICP (Inductively Coupled Plasma) analysis. The oxidation of benzyl alcohol using 6-MQCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in descending order of DMF > acetone > chloroform > cyclohexene. In the presence of DMF solvent with acidic catalyst such as sulfuric acid ($H_2SO_4$), 6-MQCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$) were effectively oxidized. Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. The Hammett reaction constant (${\rho}$) was -0.69 (308 K). The observed experimental data was used to rationalize the fact that the hydride ion transfer occurred at the rate-determining step.

Mechanism for the Oxidation Reaction of Alcohols Using Cr(VI)-Pyrazine Complex (크롬(VI)-피라진 착물을 이용한 알코올류의 산화반응과 메카니즘)

  • Park, Young Cho;Kim, Young Sik
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Cr(VI)-pyrazine complex (PZCC) was synthesized by the reaction of pyrazine with chromium (VI) trioxide in 6 M HCl. The structure was characterized using IR spectroscopy and inductively coupled plasma (ICP). The oxidation of benzyl alcohol using PZCC in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: N,N'-dimethylform-amide > acetone > chloroform > cyclohexene. In the presence of N,N'-dimethylformamide solvent with an acidic catalyst such as sulfuric acid ($H_2SO_4$ solution), PZCC oxidized benzyl alcohol (H) and its derivatives ($p-OCH_3$, $m-CH_3$, $m-OCH_3$, m-Cl, $m-NO_2$). Electron-donating substituents accelerated the reaction rate, whereas electron acceptor groups retarded the reaction rate. Hammett reaction constant (${\rho}$) was -0.70 (308 K). The observed experimental data were used to rationalize the hydride ion transfer in the rate-determining step.