• Title/Summary/Keyword: 알칼리암류

Search Result 3, Processing Time 0.015 seconds

Sr-Nd-Pb Isotopic Compositions of Lavas from Cheju Island, Korea (제주도 화산암류의 Sr-Nd-Pb 동위원소 연구)

  • 박준범;박계헌;정창식
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.89-107
    • /
    • 1996
  • Sr, Nd and Pb isotopic characteristics of alkaline lavas and tholeiites in Cheju Island show that the isotopic compositions of the former slightly overlap, but have relatively more depleted than the latter. However, in viewpoint of the two eruptional stratigraphies of tholeiites, the isotopic compositon of the older one is similar to those of alkaline rocks in Lava Plateau Stage after Lee (1982). These suggest that the parental magmas of alkaline lavas and tholeiites might have originated from the homogenous mantle sourve and that the characteristics of the mantle source to be partially melted might be different between the eruption stages. The isotopic signatures of the bolcanic rocks in Cheju Island overlap with those in Samoa Islands and South China Basin, indicating the DMM-EM IImixing trend. This is distingushed from the DMM-EM I trend of the Cenozoic volcanic rocks in Korea except for cheju Island and Northeastern China. The modelled binary mixing calculation between MM and EM IImaterials indicates that the mantle source of the volcanic rocks in Cheju Island has been mixed about less than 10% of enriched mantle material (EM II) with depleted mantle material (DMM). Concerned with the indentation model between North China Block (NCB) and South China Block (SCB) after Yin an Nie (1993), we suggest that the distinct isotopic features of DMM-EM I and DMM-EM IIof the Cenozoic volcanic rock in Korea as well as China can be explained by the difference of the nature of subcontinental lithospheric mantle as enriched mantle materials, i.e. EM I of NCB, while EM II of SCB.

  • PDF

Tholeitic volcanism in Cheju Island, Korea (제주도의 솔리아이트 화산활동)

  • 박준범;권성택
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.66-83
    • /
    • 1996
  • We report petrography, mineral chemistry, and major and trace element chemistry for rare tholeiites in Cheju island where alkalic rocks predominate. Available age data indicate that the tholeiitic magmatism was younger than 0.49Ma, possibly younger than 0.17 Ma. The tholeiites are generally fine-grained, porphyritic rock and show intergranular texture with lath-shaped plagioclase ($An_{61-46}$), orthopyroxene (bronzite) and olivine ($Fo_{78-67}$). Characteristically, two kinds of clinopyroxene (pigeonite and augite) occur only in groundmass. The tholeiites have normative quartz and show limited compositional variations ($SiO_2$=51.0-52.5 wt%; Mg#=54-60). Major and transitional metal element variations of tholeiites are distinct from those of alkaline rocks in MgO diagram, suggestingthat the two rock types cannot be simply related to differentiation process from the same magma. The ratios among $K_2O$, Rb, Ba, Nb and La are similar for both tholeiites and alkali basalts, however the ratios between the elements (P, Y and Yb) having an affinity with garnet and the above elements are higher for tholeiites than for alkali basalts. These trace element ratios suggest that the tholeiites and alkali basalts were produced by different degrees of partial melting from a similar sources material (garnet lherzolite mantle).

  • PDF

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.