• Title/Summary/Keyword: 알베도

Search Result 86, Processing Time 0.023 seconds

Retrieval of Vertical Single-scattering albedo of Asian dust using Multi-wavelength Raman Lidar System (다파장 라만 라이다 시스템을 이용한 고도별 황사의 단산란 알베도 산출)

  • Noh, Youngmin;Lee, Chulkyu;Kim, Kwanchul;Shin, Sungkyun;Shin, Dongho;Choi, Sungchul
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • A new approach to retrieve the single-scattering albedo (SSA) of Asian dust plume, mixed with pollution particles, using multi-wavelength Raman lidar system was suggested in this study. Asian dust plume was separated as dust and non-dust particle (i.e. spherical particle) by the particle depolarization ratio at 532 nm. The vertical profiles of optical properties (the particle extinction coefficient at 355 and 532 nm and backscatter coefficient at 355, 532 and 1064 nm) for non-dust particle were used as input parameter for the inversion algorithm. The inversion algorithm provides the vertical distribution of microphysical properties of non-dust particle only so that the estimation of the SSA for the Asian dust in mixing state was suggested in this study. In order to estimate the SSA for the mixed Asian dust, we combined the SSA of non-dust particles retrieved by the inversion algorithms with assumed the SSA of 0.96 at 532 nm for dust. The retrieved SSA of Asian dust plume by lidar data was compared with the Aerosol Robotics Network (AERONET) retrieved values and showed good agreement.

Artificial Sea Ice Increasing to Mitigate Global Warming (지구 온난화 경감을 위한 인공해빙증가)

  • Byun, Hi-Ryong;Park, Chang-Kyun
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.501-511
    • /
    • 2015
  • This study suggests a method of alleviating global warming by the increase of the Earth surface albedo through Artificial Sea ice Increasing (ASI) over the Available Freezing Areas (AFA). The method is developed based on the fact that the large sea surface area in or near the Arctic and the Antarctic has no ice even though both water and air temperatures are below zero and the artificial sea ice generation is thus available. The mean energy of $0.85Wm^{-2}$, which was suspected of adding to the earth by the global warming effect was calculated to offset at once when the sea ice area about $4.09{\times}10^6km^2$ was additionally increased. In addition, three techniques for producing ice plates on the sea surface (using ships, installation apparatus, and floating matter such as Green Cell Foam) for ASI were proposed. According to the result of simple analysis using the energy balance model, when ASI was maximally operated only for 3 months (September, October, and November) over AFA, it is expected that the annual mean temperature of earth surface would be decreased about $0.11^{\circ}C$ in the following year. On the other hand, in case of generating the artificial sea ice in all four seasons, a risk of triggering snowball earth was detected.

A Study on Physical Characteristics in Aerosol at Seoul in 2001 (2001년 서울지역 에어러솔의 물리학적 특성 연구)

  • 박기준;최병철
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.439-440
    • /
    • 2001
  • 대기 중의 에어러솔 입자들은 직접적으로는 빛의 산란, 흡수 등 복사 평형에 영향을 미치며, 간접적으로는 구름 응결핵(CCN)으로 작용함으로써 알베도와 구름의 수명에 영향을 미치게 된다. 자연적인 에어러솔은 인위적 활동에 따른 황 화합물, 질소 화합물, 유기물. 매연 그리고 토양 먼지의 증가에 의해 사실상 교란되어 왔다. 인위적인 에어러솔에 의한 복사 강제력(radiative forcing)은 현재 전 지구적 평균이 -0.3~-3.5Wm$^{-2}$ 정도로 추정되며, 이것은 온실 기체에 의한 강제력인 +2.0~+2.8Wm$^{-2}$ 와 비교될 만 하다(IPCC, 1995). (중략)

  • PDF

Moon Imaging for the Calibration of the COMS Meteorological Imager (천리안 위성의 기상탑재체 보정을 위한 달 영상 획득 방안)

  • Park, Bong-Kyu;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2010
  • COMS accommodates multiple payloads; Meteorological Image(MI), Ocean Color Imager(GOCI) and Ka-band communication payloads. In order to improve the quality of MI visible channel, the moon image has been taken into account as backup reference in addition to Albedo monitoring. However, obtaining the moon image by adding special mission schedule is not recommended after IOT, because we may miss chances to obtain meteorological images during the time slots for special imaging. As an alternative solution, an approach extracting moon image from MI FD(Full Disk) image has been proposed when the moon is positioned near to the earth. However, prediction of acquisition time of moon image is somewhat difficult as the moon moves while the MI is scanning type sensor. And the moon can not be seen when it is behind the earth or outside of FD field of view. This paper discusses how effectively the moon can be detected by the MI FD imaging. For that purpose, this paper describes an approach taken to predict the time when the moon image is achievable and then introduces the results obtained from computer simulation.

A Theoretical Study for the Design of Solar Air Heaters Using Porous Material (다공성 물질을 이용한 공기용 태양열 집열기의 설계를 위한 이론적 연구)

  • Hwang, Yong-Ha;Park, Seung-Ho;Kim, Jong-Eok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.79-90
    • /
    • 1993
  • A theoretical study is conducted for the design of solar air heaters using porous material. Radiative characteristics of glazing and porous absorbing media are found through spectral transmittances measured by the Visible spectrometer and the FT-IR. Using those characteristics the efficiencies of collectors are calculated one-dimensionally with the use of the Two-Flux radiation model. The efficiencies increase, as the air flow rates or albedos in the visible range increase, and as albedos in the IR range decrease. The optimum thickness of the porous medium of 15-mesh stainless steel wire screens is 0.001m, which represents the opacity of one.

  • PDF

A Study on the Characteristic and AOD Variation according to Aerosol Types Using AERONET Sunphotometer Data in Korea (AERONET 선포토미터 자료를 이용한 국내 에어로졸 유형별 특성과 광학적 두께 변화 연구)

  • Joo, Sohee;Dehkhoda, Naghmeh;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.93-101
    • /
    • 2020
  • For the first time in Korea, aerosol type was separated as PD (Pure dust), DDM (Dust Dominant Mixed), PDM (Pollution Dominant Mixed), NA (Non-Absorbing), WA (Weakly Absorbing), MA (Moderately Absorbing), and SA (Strongly Absorbing) using depolarization ratio and single-scattering albedo based on AERONET sunphotometer data. Then, seasonal and annual occurrence frequency and AOD variation are analyzed. The proportion of pollution aerosols (NA, WA, MA, SA combined) was 58.9, 46.2, 59.5, and 67.1% at Anmyeon, Gosan, Gwangju, Seoul, respectively, with Seoul being the highest and the lowest at Gosan. Annual rate changestended to increase NA and decrease PD and DDM. The AOD by type showed the highest NA at all sites. In addition, the ratio of NA and AOD continued to increase.

Analysis of On-orbit Thermal Environment of Earth Orbit Satellite during Mission Lifetime (지구궤도 인공위성의 임무기간 중 궤도 열 환경 분석)

  • Kang, Soojin;Yun, Jihyeon;Jung, Changhoon;Park, Sungwoo
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • The start of satellite thermal design was to predict the worst operating environment through analysis of the thermal environment of the operation orbit. Because the satellites have different types of operating trajectories for their mission, the exposed thermal environment also varies. Thus, it is necessary to analyze in consideration of the orbital conditions, and a design was performed to guarantee thermal stability for the worst case defined through the analysis. The orbital thermal environmental analysis required an understanding of the basic orbit mechanics and the heat exchange relationship between the space environment and satellite. The purpose of this paper was to provide an understanding of the orbital thermal environment analysis by providing basic data on the space thermal environment in the earth-orbit and describing thermal relations that calculate the amount of space heat inflow into satellites. Additionally, an example of a virtual satellite shows the overall process of analyzing the orbital thermal environment during a mission lifetime.

Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season (하절기 도시의 지역별 장.단파복사 특성 분석과 해석)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

Analysis of Radiation Energy Budget Using WISE Observation Data on the Seoul Metropolitan Area (WISE 관측자료를 이용한 수도권지역의 복사에너지수지 분석)

  • Jee, Joon-Bum;Lee, Hankyung;Min, Jae-Sik;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.103-114
    • /
    • 2017
  • Radiation energy budget was analyzed using observation data from the Weather Information Service Engine (WISE) energy flux tower on the Seoul metropolitan area. Among observation data from the 13 energy flux towers, we used meteorological variables, radiation data (upward and downward short wave, upward and downward long wave, net short wave, net long wave and net radiation), albedo and emissivity for 15 months from July 2016 to September 2017. Although Gajwa (205) and Ttuksumm (216) sites located in urban, the albedo was relatively high due to the surround environment by glass wall buildings and the Han river around the sites. And Bucheon (209) site located in the suburb represented generally low emissivity. As a result, the albedo decreased and the emissivity increased in the city center. In the Seoul metropolitan area, the net radiation energy is $73.9W/m^2$ that the radiation budget of the surface is absorbed into the atmosphere. According to WISE observation data, it can be seen that observation at each sites are influenced by the surrounding environment.

A Study of Stable Isotopic Variations of Antarctic Snow by Albedo Differences (알베도 변화에 의한 남극 눈 안정동위원소의 변동에 관한 연구)

  • Lee, Jeonghoon;Han, Yeongcheol;Ham, Ji-Young;Na, Un-Sung
    • Ocean and Polar Research
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Snow albedo can be decreased if there are any impurities on the snow surface other than the snow itself. Due to the decrease of snow albedo, melting rates of surface snow can increase, which is very crucial in climate change and hydrogeology in many parts of the world. Anthropogenic black carbons caused by the incomplete combustion of fossil fuel affect snow and tephra particles generated by geologic volcanic activities reduce snow albedo. In this study, we investigated isotopic compositions for snow covered by tephra particles and compared with this with clean snow. Isotopic compositions of snow with tephra statistically show more enriched than those of clean snow (p<0.02). This can be explained by the fact that snow becomes enriched in $^{18}O$ or D relative to meltwater as melting rates are increased. In addition, the slopes of the linear regression between oxygen and hydrogen for snow with tephra and clean snow are 6.7 and 8, respectively, and the latter is similar to that of the global meteoric water line of 8. Therefore, we can conclude that snow impurities control the isotopic compositions of snow, which is very crucial in the study of climate change and hydrogeology. To quantitatively explain these observations, melting experiments and numerical approaches are required.