• Title/Summary/Keyword: 알루미늄 제동디스크

Search Result 4, Processing Time 0.021 seconds

Characteristics Evaluation of Light Brake disc and Linning for Railway Vehicle In Terms of Tribology (트라이볼로지 관점에서 철도차량의 경량 제동 디스크와 라이닝의 특성 평가)

  • Kim, Sung-Kwon;Lee, Hi-Sung;Kwon, Seok-Jin;Kwon, Sung-Tae
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • The brake disc materials for railway vehicle have been mainly used cast-iron. The brake disc and pad should be light, resist to a thermal crack and absorb enough friction energy. In order to satisfy this requirement, aluminum alloy brake disc for railway vehicle has been newly developed. The aluminum itself has not been considered the friction material for railway vehicle. However, in the case of aluminum composite with dispersed ceramic particles, friction characteristics, resistance to wear and heat are much improved. In the present study, aluminum composite brake disc of 20% ceramic particle and three kinds of organic pads have been tested in dynamometer. The results show that Al MMC brake disc and pad have good friction coefficient and wear rate, and thermal cracks in brake disc have not been initiated. Also, the Al MMC brake disc can be applied to railway vehicle of 150 km/h.

Casting Technology of an Aluminum Alloy Composite Brake Disc (알루미늄 복합재 제동디스크 주조 기술 개발)

  • Goo, Byeong-Choon;Kim, Myung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.971-974
    • /
    • 2011
  • Aluminum matrix composites reinforced with SiC particles(AMC) are one of the candidate materials for the weight reduction of rolling stock brake discs. It is known that weight reduction of about 40% is possible when they replace conventional cast iron brake discs. But casting is not easy because of bad wettability of SiC with Al alloy. We developed two AMC brake discs with SiC volume fraction of 20% by a new casting method. It was found the developed method produced brake discs of good quality.

  • PDF

A Study on Braking Performance of Break Disc (브레이크 디스크의 제동 성능에 관한 연구)

  • Ryu, Mi-Ra;Bae, Hui-Eun;Kim, Hyun-Su;Lee, Dae-Hee;Lee, Seong-Beom;Park, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • The present research aims to develop the aluminum disc brake replacing the existing cast iron disc brake. Material such as aluminum using FEM numerical analysis in order to improve the characteristics of each element, we analyze the performance characteristics and braking time you try to change. We try to lay the foundation for the development of an aluminum disc by investigating performance characteristics of the existing cast iron disc brake and comparing them with those of the aluminum disc. This involves FEM dynamics analysis for disc materials and experimental tests using the brake dynamometer. From this study, the results of 7075 aluminum braking performance can be seen that the best.

A Thermal Stress Analysis for Suggested Shape of Al Hybrid Brake Disc (제안된 알루미늄 복합체 제동 디스크 형상의 열응력 해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.283-288
    • /
    • 2011
  • The high heat resistant material for brake disc is required for higher speed trains. Although Aluminum is very expensive, it which has high thermal conductivity and low density has been adapted to high performance light-weight brake disc. In this study, we carry out the thermal stress analysis for suggested shape of Al hybrid brake disc which was designed to meet the optimal point between a performance and economic side. And we compare the results from the analysis to results of conventional disc at the same braking speed. The result show that the temperature on braking surface of Al hybrid disc is lower than the temperature on conventional disc surface, whereas the maximum thermal stress is larger than stress on conventional disc.

  • PDF