• 제목/요약/키워드: 알루미늄 서브프레인

검색결과 4건 처리시간 0.02초

알루미늄 튜브를 이용한 자동차 리어 서브 프레임의 열간가스 성형해석 (Hot Air Forming Analysis of Automotive Rear Sub Frame using Aluminum Tube)

  • 김헌영;윤석진;이기동;김양수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.26-29
    • /
    • 2008
  • Recently, the hydroforming of high strength aluminum tubes has many studies and applications in manufacturing industry, especially in automotive industry. But high strength aluminum tube has limited expansion capability at most 15% at normal temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive sub frame components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to high temperature should be investigated and determined to get a sound product. In this paper, the hot air forming process of automotive sub frame was investigated. The effect of the forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzes by using explicit finite element method.

  • PDF

CAE 해석을 이용한 자동차용 AA6061 리어 서브-프레임의 경량화 설계 (Light-weight Design of Automotive AA6061 Rear Sub-frame Based on CAE Simulation)

  • 김기주;임종한;박준협;최병익;이재웅;김윤재
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.77-82
    • /
    • 2012
  • It is well known that the targeted fuel efficiency could only be achieved by more than 40% reduction of the vehicle weight through improved design and extensive utilization of lightweight materials. In order to obtain the goal of the weight reduction of automobiles, the researches about lighter and stronger rear sub-frame have been studied without sacrificing the safety of rear sub-frame. In this study, the weight reduction design process of rear sub-frame could be proposed based on the variation of von-Mises stress contour by substituting an AA6061 (aluminum 6061 alloy) having tensile strength of 310 MPa grade instead of SAPH440 steels. In addition, the stress ratio variations (stress over fatigue limit) of the rear sub-frame were examined and compared carefully. It could be reached that this approach method could be well established and be contributed for light-weight design guide and the optimum design conditions of the automotive rear sub-frame development.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발 (Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE))

  • 김기주;김재현;최병익
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.