• 제목/요약/키워드: 알루미늄 레이저 용접

검색결과 81건 처리시간 0.029초

용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화 (Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire)

  • 박영환
    • Journal of Welding and Joining
    • /
    • 제24권5호
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

레이저 계측에 의한 순알루미늄 용접부의 스트레인 측정 (The Strain Measurement of Pure Aluminum Welded Zone by the Laser System)

  • 성백섭;차용훈;이연신
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.71-76
    • /
    • 2002
  • Currently knowledge of strain in welds has mainly been obtained from strain gage method; that is directly attaching the gage to the most of the material. The very flew non-contact methods are still in the early stage. One of the non-contact methods is by the use of the laser that has high-level of the accuracy for the measurement, and this laser also has excellent characteristics on which many studies for its applications are focused throughout the many fields. The paper is on the measurement of the strain caused by the characteristics and the temperature changes of the GTA welded zone employed with 3D ESPI system that is functionally modified through the laser ESPI system. This system may be applied the steel plate such as for the electronics, chemistry, flood instrument and electronic appliances.

원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계 (The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner)

  • 김동윤;박영환
    • Journal of Welding and Joining
    • /
    • 제29권6호
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.

포토 다이오드를 이용한 6000계열 알루미늄 합금의 레이저 용접에서 키홀 및 플라즈마의 거동 해석 (Analysis on behavior of keyhole and plasma using photodiode in laser welding of aluminum 6000 alloy)

  • 박영환;박현성;이세헌
    • 한국레이저가공학회지
    • /
    • 제7권3호
    • /
    • pp.11-24
    • /
    • 2004
  • In automotive industry, light weight vehicle is one of issues because of the air pollution and the protection of environment. Therefore, automotive manufacturers have tried to apply light materials such as aluminum to car body. Aluminum welding using laser has some advantages high energy density and high productivity. It is very important to understand behavior of plasma and keyhole in order to improve weld quality and monitor the weld state. In this study, spectral analysis was carried out to verify the spectrum for plasma which is generated in laser welding of A 6000 aluminum alloy. Two photodiodes which cover the range of plasma wavelength was used to measure light emission during laser welding according to assist gas flow rate and welding speed. Analysis of relationship between sensor signals of welding variables and formation of keyhole and plasma is performed. To determine the level of significance, analysis of variation (ANOVA) was carried out.

  • PDF

Grey relational analysis를 이용한 알루미늄 합금의 레이저-아크 하이브리드 용접조건 최적화 (Optimizing welding parameters of laser-arc hybrid welding onto aluminum alloy via grey relational analysis)

  • 김항래;박영우;이강용;이명호;정우영;김선현
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.253-255
    • /
    • 2006
  • Grey relational analysis has been carried out to develop a new approach for optimization of Nd:YAG laser and MIG hybrid welding parameters. The quality of welded material depends on welding parameters. The parameters chosen for current study include wire type, shielding gas, laser energy, laser focus, traveling speed, and wire feed rate. The welding experiments were performed on 6K21-T4 aluminum alloy sheet. Functional demands on products may vary widely depending on their use. The ultimate tensile stress, width, and penetration were chosen as the optimization criterion. Practice based on an orthogonal array which is following Taguchi's method has been progressed. Base on the results of grey relational analysis, the optimal process parameters were obtained. This integrated work was judged and it is observed that the results obtained by using the optimal parameters are much improved compared to those obtained through initial setting.

  • PDF

고출력 $CO_2$레이저빔에 의한 구리, 청동/알루미늄 합금 클래딩 (Cladding of Cu and Bronze/Al Alloy by $CO_2$ Laser)

  • 강영주;김재도
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.109-115
    • /
    • 1997
  • Laser cladding is a technique for modification of metal surface. In this laser cladding experiment a metal powder feeding system was developed for more efficient laser cladding. This system can reduce processing time and be used simpler than the conventional method. The feeding of metal powder has given a rise to the process for sequential buildup of bulk rapidly solidified materials in the form of fine powder stream to the laser cladding process. The parameters of laser cladding have been investigated using this experimental equipment. Bronze on aluminum alloy and copper on aluminum alloy were experimented by using defocused beam, powder feeding system, and gas shielding. Good cladding was achieved in the range of beam travel speed of 2.25m/min. In the case of copper/aluminum and bronze/aluminum substrate, the absorption of laser beam was too high to produce low diluted clad. In the case of copper/1050 aluminum, the optimal laser cladding condition was of laser power of 2.8kW, powder feed rate of 0.31g/s and beam travel speed of 2.25m/min. In the case of bronze/aluminum the optimal condition is of laser power of 2.5kW, powder feed rate of 0.31g/s, and beam travel speed of 2.36m/min.

  • PDF

알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발 (Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy)

  • 박영환;이세헌
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성 (Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries)

  • 강민정;박태순;김철희;김정한
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

강과 알루미늄의 레이저 접합에 관한 연구 Part 2 : 접합 공정의 열 및 금속간 화합물 성장 해석 (A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 2 : Process Analysis)

  • 박태완;조정호;나석주
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.30-36
    • /
    • 2005
  • In this part, thermal finite element analysis(FEA) is conducted for the experiments in part 1. The molten area of base metals are analyzed by FEA results and compared with experimental ones. Temperature data from FEA results are used to calculate the IMC layer thickness analytically at the interface. IMC layer is established as a function of time and temperature when there is an interaction between solid steel and molten aluminum. The IMC layer thickness is obtained by cumulative computations using the time-temperature data from FEA results.

강과 알루미늄의 레이저 접합에 관한 연구 Part 1 : 접합 변수의 최적 조건에 관한 연구 (A Study on Laser Joining of Low Carbon Steel and Aluminum Alloy Part 1 : Process Parameters)

  • 박태완;조정호;나석주
    • Journal of Welding and Joining
    • /
    • 제23권5호
    • /
    • pp.25-29
    • /
    • 2005
  • Steel has been mainly used in the automotive industry, because of good mechanical properties, weldability and so on. However, there has been increase in using aluminum to reduce the weight of vehicle. This leads to improve fuel efficiency and to reduce air pollution. A steel-aluminum hybrid body structure is recently used not only to reduce the weight of vehicle but also to increase safety. In this paper, the laser beam joining method is suggested to join steel and aluminum. To avoid making brittle intermetallic compounds(IMC) that reduce mechanical properties of the joint area, only aluminum is melted by laser irradiation and wetted on the steel surface. The brittle IMC layer is formed with small thickness at the interface between steel and aluminum. By controlling the process parameters, brittle IMC layer thickness is suppressed under 10 micrometers which is a criterion to maintain good mechanical properties.