• 제목/요약/키워드: 알루미늄 단조 Forging Die

검색결과 21건 처리시간 0.024초

단조중 냉간단조 금형세트의 구조해석 (Structural Analysis of Die Sets in Cold Forging)

  • 조흥석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.86-89
    • /
    • 1999
  • Structural analysis of die set in cold forging is conducted by the finite element method and the results are introduced in this paper. The problem formulation is introduced in detail. In the approach, amount of shrink fit is controlled by thermal load, i.e., temperature difference between die insert and shrink fits. The loading conditions are extracted automatically from a forging simulator. An application example is given.

  • PDF

응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석 (A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena)

  • 강충길;최진석;강동우
    • 소성∙가공
    • /
    • 제5권3호
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향 (The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy)

  • 권영민;이영선;송정일;이정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF

반용융 알루미늄재료의 단조공정조건이 기계적 성질에 미치는 영향 (The effect of forging process conditions of semi-solid aluminum material on mechanical properties)

  • 강충길;강동우
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1400-1413
    • /
    • 1997
  • Semi-solid forging(SSF) process of A356 aluminium alloy has been studied to assess the effect of process variables on the component integrity. Semi-solid material(SSM) was fabricated by mechanical and electro-magnetic stirring process. The fabricated SSM by using mechanical stirring process has been carried out on cooling rate of 0.022.deg. C/sec 0.0094.deg. C/sec and stirring speed n=600, 1000 rpm, respectively. The fabricated SSM by using electro-magnetic stirring process is supplied by Pechiney. The holding time and temperature in the semi-solid state before forging also affects the globular microstructure of alloy. Therefore, the influence of these two parameters is discussed in terms of the microstructure of alloy. The SSF process has been conducted with three different die temperatures($T_{die}$=250.deg. C, 300.deg. C, 350.deg. C) and two kinds of gate types(straight gate and orifice gate). This paper is to investigate the influence of gate shapes of die on filling phenomena in SSF process more deeply. The mechanical properties of forged components were also investigated for variation of process conditions such as die temperature, gate shape and SSM.

엔진피스톤의 기계적 성질의 향상에 관한 연구 (A Study on the Improvement of Mechanical Properties for an Engine Piston)

  • 김영호;배원병;변흥석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 1995
  • In this experimental study,aluminum hotforging was conduct to get superior pistion to cast piston. Cast structure of billet is destroyed, harmful defects is removed by forging process. We proposed the direction od die design by observing formability of product according to die shape. The microstructure of forged products with different preform was investigated to determine inital billet shape. We proposed appropriate heat treatment condition for improvement of mechanical properties.

  • PDF

알루미늄 단조 Lower Arm 개발 (Development of Forged Aluminum Lower Arm)

  • 조용기;윤병은
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 제2회 단조심포지엄 단조기술의 진보
    • /
    • pp.74-80
    • /
    • 1995
  • Forged aluminum lower arm has been developed to provide weight reduction of suspension parts. It was utilized FEM analysis in design of parts. Prototype parts were producted to two shape & different forging condition. Difference of forging condition was manufacturing process of stock, forging press, forging die, heat treatment condition. As a result, weight reduction of 44%, 38% was achived. Strength and fatigue endurance of forged aluminum lower arm was excellent.

6061 알루미늄합금 휠 단조공정의 해석 (An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel)

  • 김영훈;유태곤;황병복
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

알루미늄 소재의 레오로지 직접단조공정에서 가압력이 액상 편석에 미치는 영향 (The Effect of Pressure on Liquid Segregation in Direct Rheo-Forging Process of Aluminum Alloys)

  • 오세웅;배정운;강충길
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.178-186
    • /
    • 2007
  • Rheo-forging process of aluminum alloy is suitable for large parts of net shape without defects and excellent mechanical properties in comparison with conventional die casting and forging process. To control the microstructure of the product with high mechanical properties in rheo-forming, solid fraction is required to prevent porosity and liquid segregation. Therefore, in rheo-forging process, die shape, pressure type and solid fraction are very important parameters. The defects such as porosity, liquid segregation and unfitting phenomena occur during rheo-forging process. To prevent these defects, mechanical properties and microstructure analysis of samples versus the change of pressure are carried out and the problem and its solutions are proposed. Also, the mechanical properties versus various pressures were compared with and without heat treatment. The alloys used for rheo-forming are A356 and 2024 aluminum alloy. The rheology material is fabricated by electromagnetic process with controlling current and stirring time.

마찰저감을 위한 슬라이딩 금형을 적용한 알루미늄 파이프 요크 냉간 단조공정에 관한 연구 (Study on the Cold Forging Process of Aluminum Pipe Yoke using Sliding Die for Reducing Friction)

  • 이성민;이인규;이성윤;황선광;박재욱;황원석;문영훈;이상곤
    • 소성∙가공
    • /
    • 제32권1호
    • /
    • pp.5-11
    • /
    • 2023
  • The aim of this study is to manufacture an aluminum pipe yoke of automotive steering system for lightweight. In a multistage cold forging process for aluminum pipe yoke, the surface defects frequently occur due to excessive deformation or friction during extrusion process for forming hollow pipe part. It is import to reduce the friction between the material and the forging die. This study investigated a multistage forging process with sliding die to reduce friction for aluminum pipe yoke. After evaluating by FE analysis, the forging experiment with the sliding die was carried out. As a result, it was possible to manufacture a sound aluminum pipe yoke.