• Title/Summary/Keyword: 알루미늄 단조

Search Result 82, Processing Time 0.023 seconds

Flow Stress of A16061 at Elevated Temperature and Its Application to Forging Simulation for verification (Al6061의 고온변형특성 및 단조 시뮬레이션 적용을 통한 검증)

  • Eom, J.G.;Jang, S.M.;Lee, M.C.;Jung, S.J.;Park, Geon-Hyeong;Gwak, Yang-Seop;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.474-477
    • /
    • 2009
  • In this paper, flow stress of Al6061 is obtained by compression test in the range of temperature from $300^{\circ}C$ to $550^{\circ}C$ and effective strain-rate from 0.1/s to 20.0/s. The flow stress information is used to simulate an aluminum hot forging process. Non-isothermal simulation is carried out by a rigid-thermoviscoplastic finite element method. The predictions are compared with the experiments in terms of the deformed shape of material.

  • PDF

A Filling Analysis on Forging Process of Semi-Solid Aluminum Materials Considering Solidification Phenomena (응고현상을 고려한 반용융 알루미늄재료의 단조공정에 관한 충전해석)

  • 강충길;최진석;강동우
    • Transactions of Materials Processing
    • /
    • v.5 no.3
    • /
    • pp.239-255
    • /
    • 1996
  • A new forming technology has been developed to fabricate near-net shape products using light metal. A semi-solid forming technology has some advantages compared with the conventional forming processes such as die casting squeeze casting and hot/cold forging. In this study the numerical analysis of semi-solid filling for a straight die shape and orifice die shape in gate pattern is studied on semi-solid materials(SSM) of solid fraction fs =30% in A356 aluminum alloy. The finite difference program of Navier-Stokes equation coupled with heat transfer and solidification has been developed to predict a filling pattern and the temperature distribution of SSM. The programdeveloped in this study gives die filling patterns of SSM and final solidifica-tion region.

  • PDF

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF

A Study on the Development of Aluminum Piston by Forging Process (알루미늄 단조 피스톤의 개발에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.30-36
    • /
    • 1997
  • In this study, the development of an aluminum forged piston was tried to substitute the cast piston, in which there were internal defects such as blow hole and shrink pipe. A gasoline engine piston was chosen as an example for developing the forged piston. Before aluminum forging, model, material (plasticine) test was carried out to investigate the forgeability and internal flow pattern of the forged piston at room temperature. From the result of model material test, an aluminum piston to be forged was redesigned. The aluminum pistion was forged in hot process. The quality of a forged piston was compared with that of a cast piston in the point of mechanical properties, internal defect and microstructure. It was proved that the forged piston was superior to the cast piston.

  • PDF

A Study on the Manufacture of Lower Control Arm by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 Lower Control Arm 제조에 관한 연구)

  • 유민수;권오혁;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.139-142
    • /
    • 2003
  • In this study, casting/forging process was used to produce an aluminum lower control arm for automobiles. Firstly, casting experiments were carried out to get an enhanced preform for forging the lower control arm. In the casting experiment, the effect of an additive, Sr, on the mechanical properties such as tensile strength and elongation and the microstructure of a cast preform were investigated. And a finite element analysis was peformed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum lower control arm by using the above cast preform. In the casting experiments, when 0.025% Sr was added into molten A356, the maximum values of tensile strength and elongation of the cast preform were obtained. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The cast/forged product using designed preform was made without any defects.

  • PDF

The Basic Study on the Casting/Forging Technology of Aluminum Alloy (알루미늄 합금의 주조/단조 기술에 대한 기초연구)

  • 배원병;김영호;이영석;김맹수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.62-67
    • /
    • 1998
  • An experimental study has been carried out to investigate casting process parameters which influence on the microstructures of cast preforms in casting/forging process of aluminum alloy. In the casting process, pouring temperature, pouring time, mold temperature, mold material, and, cooling method are selected as process parameters. With the cast preform, a forging test has been performed to compare mechanical properties of final products between casting/forging process and forging process. From the experimental results, low mold temperature and water cooling method are favorable for obtaining minute microstructures of cast preforms. Casting defects included in cast preforms. such as pores and shrinkage cavity, are eliminated by the forging process. And comparing cast/forged products with conventionally forged products, the former are almost as same as the latter in mechanical characteristics.

  • PDF

대형 복합재 연소관 Boss용 Al 합금 국산화 개발

  • 손영일;임성택;은일상;장창범
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.127-138
    • /
    • 1995
  • 대형 복합재 연소관 금속 보스용 고강도 알루미늄 합금 7175-T74를 개발하기 위하여, 고순도 7175 합금을 이용하여 링롤 단조법으로 대형링을 제조하였으며, 열처리와 가공 조건을 정밀제어한 특수공정을 적용하여 기존의 재료와 재질 특성을 비교 분석하였다. 분석결과 특수공정의 7175S-T74는 기존의 7175-T74 및 7075-T73에 비해 2차상 입자의 분률이 작고, 동일한 SCC특성(38% IACS) 수준에서 강도와 파괴인성이 동시에 증가한 이상적인 강도-인성-SCC 조합특성을 가졌다. 이는 특수공정에서의 고온열처리에 의한 2차상 입자의 재고용과 그에 따른 석출량 증가 때문이며, 결국 7175 합금, 링롤단조 그리고 T74 특수공정을 조합 적용하면 구조적 신뢰성과 경제성 면에서 유리한 보스용 대형링을 개발할 수 있다.

  • PDF

A Study on the Improvement of Mechanical Properties for an Engine Piston (엔진피스톤의 기계적 성질의 향상에 관한 연구)

  • 김영호;배원병;변흥석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.113-116
    • /
    • 1995
  • In this experimental study,aluminum hotforging was conduct to get superior pistion to cast piston. Cast structure of billet is destroyed, harmful defects is removed by forging process. We proposed the direction od die design by observing formability of product according to die shape. The microstructure of forged products with different preform was investigated to determine inital billet shape. We proposed appropriate heat treatment condition for improvement of mechanical properties.

  • PDF

Development of Forged Aluminum Lower Arm (알루미늄 단조 Lower Arm 개발)

  • 조용기;윤병은
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.06a
    • /
    • pp.74-80
    • /
    • 1995
  • Forged aluminum lower arm has been developed to provide weight reduction of suspension parts. It was utilized FEM analysis in design of parts. Prototype parts were producted to two shape & different forging condition. Difference of forging condition was manufacturing process of stock, forging press, forging die, heat treatment condition. As a result, weight reduction of 44%, 38% was achived. Strength and fatigue endurance of forged aluminum lower arm was excellent.

A study of the Forging Process Using (알루미늄 주물을 이용한 단조 공정 연구)

  • 김대용;윤성만;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.138-141
    • /
    • 1997
  • CFM(Cast Forge Method) is widely used in manufacturing industry to produce aluminium parts with good mechanical properties and low production cost. CFM is the process which produces a final products by forging from the initial billet by casting. The study on this paper covers the automatic design method which finds a pertinent shape for initial billet using Fast Fourier Transform, low-pass frequency filtering and FEM simulation of the nonisothermal forging process by DEFORM. These works will give us an information to enhance the low strength of a aluminium casting.

  • PDF