• Title/Summary/Keyword: 알고리즘 향상

Search Result 6,866, Processing Time 0.038 seconds

Performance Evaluation of Object Detection Deep Learning Model for Paralichthys olivaceus Disease Symptoms Classification (넙치 질병 증상 분류를 위한 객체 탐지 딥러닝 모델 성능 평가)

  • Kyung won Cho;Ran Baik;Jong Ho Jeong;Chan Jin Kim;Han Suk Choi;Seok Won Jung;Hvun Seung Son
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.71-84
    • /
    • 2023
  • Paralichthys olivaceus accounts for a large proportion, accounting for more than half of Korea's aquaculture industry. However, about 25-30% of the total breeding volume throughout the year occurs due to diseases, which has a very bad impact on the economic feasibility of fish farms. For the economic growth of Paralichthys olivaceus farms, it is necessary to quickly and accurately diagnose disease symptoms by automating the diagnosis of Paralichthys olivaceus diseases. In this study, we create training data using innovative data collection methods, refining data algorithms, and techniques for partitioning dataset, and compare the Paralichthys olivaceus disease symptom detection performance of four object detection deep learning models(such as YOLOv8, Swin, Vitdet, MvitV2). The experimental findings indicate that the YOLOv8 model demonstrates superiority in terms of average detection rate (mAP) and Estimated Time of Arrival (ETA). If the performance of the AI model proposed in this study is verified, Paralichthys olivaceus farms can diagnose disease symptoms in real time, and it is expected that the productivity of the farm will be greatly improved by rapid preventive measures according to the diagnosis results.

Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles (단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교)

  • Yong-Gu Lee
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.307-327
    • /
    • 2023
  • To analyze the impact of word embedding on book titles, this study utilized word embedding models (Word2vec, GloVe, fastText) to generate embedding vectors from book titles. These vectors were then used as classification features for automatic classification. The classifier utilized the k-nearest neighbors (kNN) algorithm, with the categories for automatic classification based on the DDC (Dewey Decimal Classification) main class 300 assigned by libraries to books. In the automatic classification experiment applying word embeddings to book titles, the Skip-gram architectures of Word2vec and fastText showed better results in the automatic classification performance of the kNN classifier compared to the TF-IDF features. In the optimization of various hyperparameters across the three models, the Skip-gram architecture of the fastText model demonstrated overall good performance. Specifically, better performance was observed when using hierarchical softmax and larger embedding dimensions as hyperparameters in this model. From a performance perspective, fastText can generate embeddings for substrings or subwords using the n-gram method, which has been shown to increase recall. The Skip-gram architecture of the Word2vec model generally showed good performance at low dimensions(size 300) and with small sizes of negative sampling (3 or 5).

Scaling Attack Method for Misalignment Error of Camera-LiDAR Calibration Model (카메라-라이다 융합 모델의 오류 유발을 위한 스케일링 공격 방법)

  • Yi-ji Im;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1099-1110
    • /
    • 2023
  • The recognition system of autonomous driving and robot navigation performs vision work such as object recognition, tracking, and lane detection after multi-sensor fusion to improve performance. Currently, research on a deep learning model based on the fusion of a camera and a lidar sensor is being actively conducted. However, deep learning models are vulnerable to adversarial attacks through modulation of input data. Attacks on the existing multi-sensor-based autonomous driving recognition system are focused on inducing obstacle detection by lowering the confidence score of the object recognition model.However, there is a limitation that an attack is possible only in the target model. In the case of attacks on the sensor fusion stage, errors in vision work after fusion can be cascaded, and this risk needs to be considered. In addition, an attack on LIDAR's point cloud data, which is difficult to judge visually, makes it difficult to determine whether it is an attack. In this study, image scaling-based camera-lidar We propose an attack method that reduces the accuracy of LCCNet, a fusion model (camera-LiDAR calibration model). The proposed method is to perform a scaling attack on the point of the input lidar. As a result of conducting an attack performance experiment by size with a scaling algorithm, an average of more than 77% of fusion errors were caused.

A Study on Factors Influencing the Severity of Autonomous Vehicle Accidents: Combining Accident Data and Transportation Infrastructure Information (자율주행차 사고심각도의 영향요인 분석에 관한 연구: 사고데이터와 교통인프라 정보를 결합하여)

  • Changhun Kim;Junghwa Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.200-215
    • /
    • 2023
  • With the rapid advance of autonomous driving technology, the related vehicle market is experiencing explosive growth, and it is anticipated that the era of fully autonomous vehicles will arrive in the near future. However, along with the development of autonomous driving technology, questions regarding its safety and reliability continue to be raised. Concerns among technology adopters are increasing due to media reports of accidents involving autonomous vehicles. To promote the improvement of the safety of autonomous vehicles, it is essential to analyze previous accident cases and identify their causes. Therefore, in this study, we aimed to analyze the factors influencing the severity of autonomous vehicle accidents using previous accident cases and related data. The data used for this research primarily comprised autonomous vehicle accident reports collected and distributed by the California Department of Motor Vehicles (CA DMV). Spatial information on accident locations and additional traffic data were also collected and utilized. Given that the primary data used in this study were accident reports, a Poisson regression analysis was conducted to model the expected number of accidents. The research results indicated that the severity of autonomous vehicle accidents increases in areas with low lighting, the presence of bicycle or bus-exclusive lanes, and a history of pedestrian and bicycle accidents. These findings are expected to serve as foundational data for the development of algorithms to enhance the safety of autonomous vehicles and promote the installation of related transportation infrastructure.

Statistical Method and Deep Learning Model for Sea Surface Temperature Prediction (수온 데이터 예측 연구를 위한 통계적 방법과 딥러닝 모델 적용 연구)

  • Moon-Won Cho;Heung-Bae Choi;Myeong-Soo Han;Eun-Song Jung;Tae-Soon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.543-551
    • /
    • 2023
  • As climate change continues to prompt an increasing demand for advancements in disaster and safety management technologies to address abnormal high water temperatures, typhoons, floods, and droughts, sea surface temperature has emerged as a pivotal factor for swiftly assessing the impacts of summer harmful algal blooms in the seas surrounding Korean Peninsula and the formation and dissipation of cold water along the East Coast of Korea. Therefore, this study sought to gauge predictive performance by leveraging statistical methods and deep learning algorithms to harness sea surface temperature data effectively for marine anomaly research. The sea surface temperature data employed in the predictions spans from 2018 to 2022 and originates from the Heuksando Tidal Observatory. Both traditional statistical ARIMA methods and advanced deep learning models, including long short-term memory (LSTM) and gated recurrent unit (GRU), were employed. Furthermore, prediction performance was evaluated using the attention LSTM technique. The technique integrated an attention mechanism into the sequence-to-sequence (s2s), further augmenting the performance of LSTM. The results showed that the attention LSTM model outperformed the other models, signifying its superior predictive performance. Additionally, fine-tuning hyperparameters can improve sea surface temperature performance.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method (RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측)

  • Olga Chernyaeva;Taeho Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.325-345
    • /
    • 2023
  • In the rapidly evolving domain of e-commerce, our study presents a cohesive approach to enhance customer satisfaction prediction from online reviews, aligning methodological innovation with practical insights. We integrate the RFE-SHAP feature selection with LDA topic modeling to streamline predictive analytics in e-commerce. This integration facilitates the identification of key features-specifically, narrowing down from an initial set of 28 to an optimal subset of 14 features for the Random Forest algorithm. Our approach strategically mitigates the common issue of overfitting in models with an excess of features, leading to an improved accuracy rate of 84% in our Random Forest model. Central to our analysis is the understanding that certain aspects in review content, such as quality, fit, and durability, play a pivotal role in influencing customer satisfaction, especially in the clothing sector. We delve into explaining how each of these selected features impacts customer satisfaction, providing a comprehensive view of the elements most appreciated by customers. Our research makes significant contributions in two key areas. First, it enhances predictive modeling within the realm of e-commerce analytics by introducing a streamlined, feature-centric approach. This refinement in methodology not only bolsters the accuracy of customer satisfaction predictions but also sets a new standard for handling feature selection in predictive models. Second, the study provides actionable insights for e-commerce platforms, especially those in the clothing sector. By highlighting which aspects of customer reviews-like quality, fit, and durability-most influence satisfaction, we offer a strategic direction for businesses to tailor their products and services.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

Development of a Slope Condition Analysis System using IoT Sensors and AI Camera (IoT 센서와 AI 카메라를 융합한 급경사지 상태 분석 시스템 개발)

  • Seungjoo Lee;Kiyen Jeong;Taehoon Lee;YoungSeok Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Recent abnormal climate conditions have increased the risk of slope collapses, which frequently result in significant loss of life and property due to the absence of early prediction and warning dissemination. In this paper, we develop a slope condition analysis system using IoT sensors and AI-based camera to assess the condition of slopes. To develop the system, we conducted hardware and firmware design for measurement sensors considering the ground conditions of slopes, designed AI-based image analysis algorithms, and developed prediction and warning solutions and systems. We aimed to minimize errors in sensor data through the integration of IoT sensor data and AI camera image analysis, ultimately enhancing the reliability of the data. Additionally, we evaluated the accuracy (reliability) by applying it to actual slopes. As a result, sensor measurement errors were maintained within 0.1°, and the data transmission rate exceeded 95%. Moreover, the AI-based image analysis system demonstrated nighttime partial recognition rates of over 99%, indicating excellent performance even in low-light conditions. Through this research, it is anticipated that the analysis of slope conditions and smart maintenance management in various fields of Social Overhead Capital (SOC) facilities can be applied.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.