• Title/Summary/Keyword: 안전방사기간

Search Result 80, Processing Time 0.028 seconds

고준위 방사성폐기물 관리의 방향과 과제 - 사용후핵연료 안심 관리 현안과 비전

  • Hwang, Yong-Su
    • Nuclear industry
    • /
    • v.36 no.6
    • /
    • pp.22-36
    • /
    • 2016
  • 사용후핵연료 안심 관리는 대부분의 국가에서 중앙 정부의 주도로 어떤 국책 사업보다 오랜 기간 동안 원활한 사업이 진행될 수 있도록 단계별 접근 방안(Step-wise Approach)을 수립해 과학적인 측면에서 안전성/핵비 확산성 확보와 함께 사회적 수용성을 높일 수 있도록 진행되어야 하는 현안이다. 이를 위해서는 단순히 단기적인 대책인 저장 사업 등을 분리해 다루는 접근 방안으로는 한계가 있어 최종 처분까지 투명한 사업 방안이 선정되고 이를 달성하기 위한 국가 체계 설정 및 관련 재원 확보와 지속적인 공론화를 통한 안전 확인 및 수용성 확보가 수행되어야 할 것이다. 사용후핵연료 관리 사업은 적어도 수십조의 재원이 필요한 대규모 국책 사업이고 안전성에 대한 국민들의 여망이 크므로 이를 지속적으로 수행하기 위해서는 관련 기술 개발 및 사업 진흥을 위한 국가적 노력과 함께 안심 관리를 위한 철저한 독립적인 규제 체제 확립 및 특히 대한민국과 같은 핵비확산 선도국 입장에서는 투명한 민감 핵물질 관리 등 다양한 측면에서 노력이 필요할 것이다.

  • PDF

Radiation Safety Consideration Regarding the Treatment which uses the Radioactive Substance (방사성물질을 이용한 치료의 안전관리 고찰)

  • Lim, Cheong-Hwan;Kim, Seung-Chul;Lee, Gui-Won
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.217-224
    • /
    • 2008
  • Is trend that treatment that use isotope of radioactive substance increases from 1964 to now steadily. Bursting tube state solidified accordingly. But, do not establish treatment ward in presence at a sickbed by means that present regulation and system escape this as well as possession that exert negative impact in treatment action preferably is and is treating by radioactivity of small quantity, treatment air by that do not detain many sickers without equaling the institution although there is treatment ward keeps fair death anniversary and is in reservation stand-by status. To possess about 10 therapy rooms including existing sickroom in the institute of nuclear energy recently is looked but is waiting for an opportunity for treatment during suitableness time yet indeed even as that operate 57 radiation isotope therapy rooms all in about 28 hospitals in present domestic state is solveded. Therefore, radiation safety supervision by medical treatment action that treat as radioactive substance may need more active effort. Make mandatory to equipment that hospital which correspond to present the third medical examination and treatment must equip, or effort about more active system improvement may have to be about equipment that enforce this.

Design, Manufacturing, and Performance estimation of a Disposal Canister for the Ceramic Waste from Pyroprocessing (파이로 공정 세라믹 폐기물을 위한 처분용기의 설계, 제작 방안, 그리고 기능 평가)

  • Lee, Minsoo;Choi, Heui-Joo;Lee, Jong-Youl;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.209-218
    • /
    • 2012
  • A pyroprocess is currently being developed by KAERI to cope with a highly accumulated spent nuclear fuel in Korea. The pyroprocess produces a certain amount of high-level radioactive waste (HLW), which is solidified by a ceramic binder. The produced ceramic waste will be confined in a secure disposal canister and then placed in a deep geologic formation so as not to contaminate human environment. In this paper, the development of a disposal canister was overviewed by discussing mainly its design premises, constitution, manufacturing methods, corrosion resistance in a deep geologic environment, radiation shielding, and structural stability. The disposal canister should be safe from thermal, chemical, mechanical, and biological invasions for a very long time so as not to release any kind of radionuclides.

사용후핵연료 파이로공정 시설의 안전성 연구현황

  • Yu, Gil-Seong;Jo, Il-Je
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.253-253
    • /
    • 2009
  • 전세계적 고유가 및 $CO_2$ 배출로 인한 지구 온난화 문제 동 앞으로의 에너지 개발은 지속가능하며, 환경친화적이어야 한다. 따라서 가장 값싼 에너지원의 하나이며, 또한 환경문제에서도 유리한 원자력 에너지에 대한 세계적인 관심이 지난 약 30년 정도의 침체기간을 거친후 미국, 중국, 인도, 유럽, 아시아 등을 중심으로 다시 부활하고 있다. 그러나 미래 원자력에너지의 활발한 이용 및 지속 가능성을 위해서는 고준위 방사성 폐기물의 처리문제가 반드시 해결되어야 하며, 그 중에서도 사용후핵연료의 관리문제는 원자력 발전소의 계속 운전을 위해 시급히 해결되어야 한다. 한국원자력연구원도 2008년 12월 결정된 정부의 "미래 원자력시스템 개발 Action Plan" 을 통해 이러한 사용후핵연료의 관리문제를 해결하기 위한 연구 과제를 10여년 동안 수행해오고 있으며, 그 중 하나가 파이로(Pyroprocess) 공정개발이다. 1997년부터 관련연구가 착수되어, 2001년부터는 약 6년간에 걸쳐 파이로의 전처리 공정 및 전해환원 공정에 대한 실험실 규모 실증시설인 ACPF(Advanced spent fuel Conditioning Process Facility)를 개발한 바 있다. 또한 향후 파이로 기술의 상용화를 위해 2016년 까지 약 10톤/년 규모의 공학규모 파이로 실증시설(ESPF)을 건설하고 이를 기초로 2025년까지 100톤/년 규모의 파이로 상용시설 (KAPF) 을 건설하여 여기서 나온 우라늄 및 TRU 물질을 이용해 2030년까지 개발 예정인 소듐냉각 고속로에 필요한 핵연료를 제작, 공급하는 계획을 가지고 있다. 이 논문에서는 파이로 시설개발의 가장 중요한 인자중 하나인 시설의 안전성 확보를 위해 외국 및 국내에서의 연구개발 현황을 알아보고 안전성 분석 및 평가방법에 대한 기본 인자들을 도출해 보았다. 또한 파이로 시설의 인허가를 위한 사용후핵연료 처리시설 규제관련 국, 내외의 연구현황도 알아보았다.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Discussion about the Self Disposal Guideline of Medical Radioactive Waste (의료용 방사성폐기물 자체처분 가이드라인에 관한 고찰)

  • Lee, Kyung-Jae;Sul, Jin-Hyung;Lee, In-Won;Park, Young-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.13-27
    • /
    • 2017
  • Purpose In the procedure of domestic medical radioactive self-disposal, there are many requests of supplementation and difficulties on the screening process. In this regard, presentation of basic guideline will improve the work processing efficiency of medical institution radioactive waste. From 2015 to 2016, We reviewed and compared a supplementary requests of domestic fifteen medical institution radioactive self-disposal Plan & Procedure manual. In connection with this, we derive the details of the radioactive waste document based on the relative regulation of nuclear safety Act. The representative supplementary requests of Korea Institute of Nuclear Safety are disposal method of non-flammability radioactive waste, storage method of scheduled self-disposal waste, the legitimacy of self-disposal and pre-treatment of self-disposal, reference radioactivity of disused filter and output of storage period, attachment the evidential matter of measurement efficiency when using a gamma counter. Through establishing a medical radioactive waste guideline, we can clearly suggest a classification standard of radioactive nuclide and the type of occurrence. As a result, we can confirm the reduction of examination processing period while preparing a self-disposal document and there is no spending expenses for business agency. Also, the storage efficiency of facility will better and reduce the economic expenses. On the basis of this guideline, we will expect a contribution to the improvement of work efficiency for officials who has a working-level difficulty of radioactive waste self-disposal.

  • PDF

Development of Cyber R&D Platform on Total System Performance Assessment for a Potential HLW Repository ; Application for Development of Scenario through QA Procedures (고준위 방사성폐기물 처분 종합 성능 평가 (TSPA)를 위한 Cyber R&D Platform 개발 ; 시나리오 도출 과정에서의 품질보증 적용 사례)

  • Seo Eun-Jin;Hwang Yong-soo;Kang Chul-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.311-318
    • /
    • 2005
  • Transparency on the Total System Performance Assessment (TSPA) is the key issue to enhance the public acceptance for a permanent high level radioactive repository. To approve it, all performances on TSPA through Quality Assurance is necessary. The integrated Cyber R&D Platform is developed by KAERI using the T2R3 principles applicable for five major steps in R&D's. The proposed system is implemented in the web-based system so that all participants in TSPA are able to access the system. It is composed of FEAS (FEp to Assessment through Scenario development) showing systematic approach from the FEPs to Assessment methods flow chart, PAID (Performance Assessment Input Databases) showing PA(Performance Assessment) input data set in web based system and QA system receding those data. All information is integrated into Cyber R&D Platform so that every data in the system can be checked whenever necessary. For more user-friendly system, system upgrade included input data & documentation package is under development. Throughout the next phase R&D, Cyber R&D Platform will be connected with the assessment tool for TSPA so that it will be expected to search the whole information in one unified system.

  • PDF

Characterization of Domestic Well Intrusion Events for the Safety Assessment of the Geological Disposal System (심지층 처분시스템의 안전성평가를 위한 국내 우물침입 발생 특성 평가)

  • Kim, Jung-Woo;Cho, Dong-Keun;Ko, Nak-Youl;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In the safety assessment of the geological disposal system of the radioactive wastes, the abnormal scenarios, in which the system is impacted by the abnormal events, need to be considered in addition to the reference scenario. In this study, characterization and prediction of well intrusion as one of the abnormal events which will impact the disposal system were conducted probabilistically and statistically for the safety assessment. The domestic well development data were analyzed, and the prediction methodologies of the well intrusion were suggested with a computation example. From the results, the annual well development rate per unit area in Korea was about 0.8 well/yr/km2 in the conservative point of view. Considering the area of the overall disposal system which is about 1.5 km2, the annual well development rate within the disposal system could be 1.2 well/yr. That is, it could be expected that more than one well would be installed within the disposal system every year after the institutional management period. From the statistical analysis, the probabilistic distribution of the well depth followed the log-normal distribution with 3.0363 m of mean value and 1.1467 m of standard deviation. This study will be followed by the study about the impacts of the well intrusion on the geological disposal system, and the both studies will contribute to the increased reliability of safety assessment.

Knowledge, Attitude, and Practice of Radiation Management among Radiation Generating Device Manufacturers and Medical Personnel (방사선 발생장치 제조업체 및 의료기관 종사자의 방사선 관리에 대한 지식, 태도 및 실천)

  • Kim, Kyu-Hwan;Bae, Seok-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.418-426
    • /
    • 2021
  • This study investigates the perception of radiation safety management in radiation generator manufacturing workers and medical institutions. The basic data obtained is further applied to improve active coping ability and safety levels. The knowledge and attitude practice score of radiation was found to be related to gender, age, marital status, occupation, position, current work period, total work period, radiation related work period, the manual available, defense facility maintenance, number of defense equipment, radiation safety education, special health examination, and recognition of radiation terms. In particular, the knowledge score of radiologists was highest among the radiation-related occupations (<0.05). Radiation safety management requires active defense endeavors to prevent radiation exposure, by both workers of radiation manufacturers and medical institutions. Moreover, institutional devices such as compliance with guidelines, periodic education, facility reinforcement, manual preparation, and special health checkups are required for efficient radiation safety management.

The Feasibility of Natural Ventilation in Radioactive Waste Repository Using Rock Cavern Disposal Method (동굴처분 방식을 사용하는 방사성 폐기물 처분장의 자연 환기 타당성 평가)

  • Kim Jin;Kwon Sang Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.3
    • /
    • pp.183-192
    • /
    • 2005
  • Natural ventilation in radioactive waste repositories is considered to be less efficient than mechanically forced ventilation for the repository working environment and hygiene & safety of the public at large, for example, controlling the exposure of airborne radioactive particulate matter. It is, however, considered to play an important role and may be fairly efficient for maintaining environmental conditions of the repository over the duration of its lifetime, for example, moisture content and radon (Rn) gas elimination in repository. This paper describes the feasibility of using natural ventilation which can be generated in the repository itself, depending on the conditions of the natural environment during the periods of repository construction and operation. Evidences from natural cave analogues, actual measurements of natural ventilation pressures in mountain traffic tunnels with vertical shafts, and calculations of airflow rates with given natural ventilation pressures indicate possible benefits from passive ventilation for the prospective Korean radioactive waste repository. Natural ventilation may provide engineers with a cost-efficient method for heat and moisture transfer, and radon (Rn) gas elimination in a radioactive waste repository. The overall thermal performance of the repository may be improved. The dry-out period may be extended, and the seepage flux likely would be decreased.

  • PDF