• Title/Summary/Keyword: 안병의

Search Result 135, Processing Time 0.023 seconds

육류 소비구조의 변화와 전망

  • Korea Meat Industries Association
    • the MEAT Journal
    • /
    • s.21 spring
    • /
    • pp.25-45
    • /
    • 2000
  • 본 자료는 한국농촌경제연구원의 연구보고서 육류 소비구조의 변화와 전망('99년 12월, 연구원:이계임, 최진현, 이철현, 안병일)에서 발췌하였습니다.

  • PDF

Approximate Synthesis of 5-SS Multi Link Suspension Systems for Steering Motion (조향 운동을 고려한 5-SS 멀티링크 현가장치의 근사 합성)

  • Kim, Seon-Pyeong;Sim, Jae-Gyeong;An, Byeong-Ui;Lee, Eon-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • This paper presents an approximate synthesis of 5-SS multi link suspension for 2 D.O.F motions. In the proposed synthesis method, alteration curves of camber, toe, kingpin and caster angles are optimized during the bump rebound and the steering motions. And joint positions can be located within desired boundari es. Especially, steering motions are considered for control of kingpin offset and caster trail. Prescribed motions contain both wheel center positions and imaginary kingpin axes in the multi link type suspension. Constraint equations are formulated with di splacement matrix and velocity matrix using instantaneous screw axis.

Approximate Synthesis of 5-SS Multi Link Suspension System (근사 합성법을 이용한 5-SS 멀티 링크 현가장치의 기구학적 설계)

  • 김선평;심재경;안병의;이언구
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2665-2671
    • /
    • 2000
  • Dimensional Synthesis, which is apart of kinematic synthesis, is to determine the dimensions of a mechanism of preconceived typer for a specified task and prescribed performance. In this paper, in an effort to provide designers with flexibility, a dimensional approximate synthesis method is presented for utilizing prescribed tolerance both the displacement and joint positions of a mechanism to be synthesized. For this, a constrained optimization problem is formulated with displacement parameters and joint positions as variables. The proposed method is applied to the synthesis of a 5-SS multi link suspension mechanism. The method discussed here, however, can be easily applied to any mechanism of which the kinematic constraint equations can be derived.