• Title/Summary/Keyword: 아파트 슬래브

Search Result 36, Processing Time 0.02 seconds

Evaluation on the Compression Capacity of Transfer Slab Systems according to the Variation of Column Length (기둥의 길이변화에 따른 전이슬래브 시스템의 압축성능 평가)

  • Sim, Yeon-Ju;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.695-702
    • /
    • 2016
  • This paper presents compression capacity of transfer system in pilotis subjected to axial load. Recently, transfer system is usually used in low floors of wall-typed apartments when members' sections are suddenly changed between upper walls and bottom columns. It can help transfer loads from the walls to the columns. Especially, a transfer girder system is usually used as one of transfer systems applied to a pilotis. However, the transfer girder system has low constructability and economics. Therefore, the other transfer system with transfer slab was suggested and has been studied. In this paper, to evaluate the compression capacity of transfer slab, tests were conducted on pilotis transfer slab systems subjected to axial load. First of all, two specimens were determined by FEM. The main parameter is length of the bottom columns. The lengh of the bottom columns were 40% and 50% of length of upper walls in the tranfer slab specimens. Results showed that the compression capacity of piloti transfer systems subjected to axial load was affected by length of bottom columns. The compression capacity is 52% higher than design strength for specimen with the bottom column's length of 40% of length of the upper wall and 46% for specimen with the bottom column's length of 50% of length of the upper wall.

Vibration Analysis and Evaluation for the Slab of Housing (공동주택 바닥판의 진동해석 및 평가)

  • Park, Kang-Geun;Kim, Yong-Tae;Choi, Young-Wha;Kim, Han-Choul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.246-255
    • /
    • 2006
  • In these days the floor vibration is beginning to make its appearance of the environmental dispute in apartment building. Standard floor system are suggested for the settlement of this issue by government. The sound of floor impact sound is needed to secure comfortable quality in housing. Also, it is required an accurate analysis and a proper evaluation for floor vibration. Refine model is necessary for the floor system of housing to analyze accurately the floor vibration. But this refine model is not efficient because it is required so much running time for vibration analysis and it is difficult of modeling of standard floor slab. In this paper, new modeling methods of standard floor slab are proposed for the accurate rigidity evaluation. By using the new modeling method, the accurate vibration response can be obtained and can accurately evaluate the rigidity of standard floor system with resilient materials. Therefore the proposed modeling method is of practical use for vibration analysis of floor system of apartment building.

  • PDF

Punching Shear Strength of Slab-Column Interior Connection Considering Anchorage Performance of Shear Reinforcements (전단보강재의 정착성능을 고려한 슬래브-기둥 내부접합부의 뚫림전단강도)

  • Jung, Hyung-Suk;Choi, Hyun-Ki;Chung, Joo-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Flat plate slab is cost-efficient structural system widely used in high rise building, apartment and parking garages. But flat plate-column connections are so weak against punching shear failure that it may cause collapse of overall structure. In this study, spiral type shear reinforcement which increases the shear strength and ductility of the plate-column connection and has good workability was proposed. And experimental test was performed to verify the punching shear capacity of spiral type shear reinforcement. The current code does not accurately estimate the punching shear strength of slab-column connection with shear reinforcement because slab is so slender that punching failure may occurred before shear reinforcement reached yield stress. Therefore modified equation of ACI code for punching shear strength was proposed base on finite element analysis using LUSAS program, and data analysis from CEB-FIP database.

Behavior of Coupling Shear Wall with New Openings (개구부 신설에 따른 병렬 전단벽의 거동특성)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.152-160
    • /
    • 2008
  • Since wall system apartment used the shear wall as main lateral resistance member, installation of openings which causing section loss of walls may cause significant problem to structure. Also, there are few studies for inducing coupling beam or slabs which are occurred by installing openings. Therefore, this study planned isolated 2-story shear walls which are reduced three half-scale specimen to find out walls behavior characteristic. The test results showed that strength reduction caused by loss of effective section of walls and different result of stiffness and energy dissipation regarding to the coupling beam and coupling slabs.

Structural Performance of RC Slab-Wall Joints Reinforced by Welded Deformed Steel Bar Mats (철근격자망을 사용한 슬래브-벽체 접합부의 구조성능)

  • Park, Seong-Sik;Yoon, Young-Ho;Lee, Bum-Sik
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 2011
  • In order to clarify the structural performances of Welded Deformed Steel Bar Mats (WDSBM), the research stated includes the tests for standard hook of top bars of slab in concrete slab-wall joints, the tests for embedment length of top bar of slab, and the development strength tests for standard hook. The test results are as follows; (1) For slab-wall joints using WDSBM as reinforcement in slab, if the top bars of WDSBM are spliced by ordinary bars with sufficient development length and size, it is enough for the strength and crack control. (2) When WDSBM of slab is spliced in joint, the strength is increased with the embedment of bars of this WDSBM into wall. Beyond peak strength, however, ductility is diminished to that as no splice due to pull-out failure. (3) For slab-wall system, ultimate strain of concrete for flexural compression zone in lower surface of slab seems much greater than that of normal concrete beam. The reason is that normal concrete beam has the joint with $180^{\circ}$, however slab-wall joint has the $90^{\circ}$ of which concrete can be confined.

Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab (장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성)

  • Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2020
  • In the present paper, as a way of reducing heavyweight impact sounds, in particular, among floor impact sounds which have come to the forefront as a social issue recently, a floor joist slab is proposed that is expected to bring an effect of reducing heavyweight impact sounds through a shift in the natural frequency by installing a floor joist on a flat-type slab to increase the rigidity of the floor slab, differently from the existing method that increases the thickness of floor slab, and the heavyweight impact sound characteristics depending on the floor joist height and interval are interpretively analyzed. As a result of the analysis, though a trend is shown where the sound pressure level decreases as the slab thickness of floor joist increases, and as no difference is shown when thickness is above a certain value, it is thought that there is a threshold for the effect of an increase in floor thickness on blockage of heavyweight impact sounds. Also, as an increase in floor rigidity resulting from an increase in the floor joist height and a decrease in the interval does not lead to a consistent increase in the performance of blocking heavyweight impact sounds, it is thought that a different floor joist height and interval should be applied to each type of house to expect optimum performance of blocking heavyweight impact sounds, and an increase of 100mm in the floor joist height or a decrease of about 100mm in the interval is expected to bring an effect of reducing heavyweight impact sounds by about 1dB to 2dB.

An Experimental Study on the Development of Semi-Slim Composite Beam with Traperzodial Composite Deck Plate (골형 합성 테크플레이트를 사용한 반슬림 합성보의 개발에 관한 실험적 연구)

  • Bae, Kyu-Woong;Oh, Sang-Hoon;Heo, Byung-Wook;Yang, Myung-Sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.29-40
    • /
    • 2001
  • Steel frames are increasingly used in commercial buildings. and most steel frames are designed to achieve composite action with the concrete floor slab. The advantages of 'composite construction' are now well understood in terms of structural economy. good performance in service. and ease of construction. But. these conventional composite construction system are difficult to apply steel framed apartment due to their large depth. So. in this study we developed Semi Slim Floor system which could reduce the overall depth of composite beam. Semi Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimised by incorporating the steel floor beams within the depth of the concrete floor slab. Twelve composite slab specimens with different deck-type. slab width. with or without stud bault and concrete topping thickness were tested to evaluate the flexural capacity.

  • PDF

Structural Behavior of Slab in the Partial Demolition for the Apartment Remodeling (아파트 리모델링을 위한 부분해체에서 슬래브의 구조적 거동)

  • Choi, Hoon;Joo, Hyung Joong;Kim, Hyo Jin;Yoon, Soon Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.19-30
    • /
    • 2012
  • Due to the fact that the social environment is improved and the urban development is stabilized, the demand of new construction of apartment becomes slowdown. Accordingly, there are many researches to lengthen the service life of the existing apartment through the remodeling and its importance is continuously rising. However, reliable design specifications and guidelines for the design of remodeling with partial demolition are not provided yet in Korea. Specially, in the apartment remodeling, slab collapse accidents take major portion in all accidents that reported by Korean Government. It is very important to prevent intial crack of slab because intial crack could cause severe accident like collapse of all structure in a short period of time. The purpose of this study is to develop structural guidelines that could guarantee the structural safety and serviceability of slab structure and could be adopted in Korean remodeling with partial demolition. There are mainly two components to determine structural behavior of slab structure. One is the shape of slab structure and the other is load which is resisted by the slab structure. In this study, the weight per unit volume of concrete debris and concrete strength are estimated through the analysis of previous researches to recognize the relationship between the shape of slab and load that loaded on the slab. Accordingly, approximately 300 pieces of floor plan are collected and analyzed. The finite element analysis is conducted using these analyzed and estimated results. From the finite element analysis results, the limited stacking height of debris is suggested and the stacking method is also discussed. In addition, to find the relationship between movement of demolition equipment and structural behavior of slab, the static and dynamic loading tests are conducted. From the results of loading tests, the impact factor which will be considered in the remodeling design could be estimated.

Forecast on Internal Condensation at Ceiling of Super-high Apartment Building Faced with Open Air (외기에 면한 초고층 아파트 천정 내부결로 예측)

  • Ahn Jae-Bong;Song Young-Woong;Choi Yoon Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.626-629
    • /
    • 2003
  • This study is to forecast possible occurrence of internal condensation around parpets and H-beam located at the inside of balcony ceilings on the uppermost floor of super-high apartment buildings faced with open air in order to provide dwellers with more comfortable environment in the related space and get rid of their uneasiness about the condensation. In this study, we estimated internal condensation. which vary in accordance with humidity pressure distribution, at curtain walls, stone panels or lower parts of slabs that constitute outer space of the residence and are weak against heat, through temperature forecast and temperature distribution interpretation program at normal two-dimension temperature.

  • PDF