• Title/Summary/Keyword: 아크 채널 모델

Search Result 2, Processing Time 0.017 seconds

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 이론적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Guen
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.85-93
    • /
    • 2011
  • A parametric study is conducted for the design of segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship between input power, current condition, plasma temperature, inner diameter (R) and length (L) of the torch constrictor based on arc channel model. The results reveal that arc plasma temperatures increase monotonically as ��L increases or R decreases for the ranges of R ${\leq}$ 7.5 mm and L ${\leq}$ 1.25 m. For larger valuse of ��R and L than 7.5 mm and 1.25 m, respectively, however, they show non-linear behavior corresponding to the variations of ��L, which stands for the generation of unstable arc plasma. From this parametric study, optimum ranges of R and L are suggested as 5.5 mm ${\leq}$ R ${\leq}$ 7.5 mm and 0.25 m ${\leq}$ L ${\leq}$ 0.5 m for 0.4 MW class segmented arc plasma torch, under which stable arc plasma can be achieved at the input currents of ~300 A.

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 해석적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Gun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.768-774
    • /
    • 2010
  • A parametric study is conducted for the segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship equations between plasma temperature, inner diameter (R) and length (L) of the torch constrictor at the given input power and current conditions based on the arc channel model. The results reveal that arc plasma temperatures show non-linear behavior or absence corresponding to the variations of L and R when their values become larger than 1.25 m and 7.5 mm, respectively. For L < 1.25 m and R < 7.5 mm, however, they can increase monotonically as L increase or R decrease when one of both parameters is fixed. From these parametric study results, optimum ranges of R and L are suggested as $5.5mm{\leq}R{\leq}7.0mm$ and $0.5m{\leq}L{\leq}1.0m$ for 0.4 MW class segmented arc plasma torch, under which stable arc plasma with the temperatures of ~15,000 K can be achived at the input currents of ~300 A.

  • PDF