• Title/Summary/Keyword: 아치형

Search Result 139, Processing Time 0.026 seconds

터널시공에 따른 지하수위 변화의 모델링과 이를 고려한 완전방수 터널의 라이닝 설계 예

  • 남기천;이형원;배정식;나경웅
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.12-23
    • /
    • 1994
  • 터널의 방수형식은 배수형(Wet System)과 방수형(Dry System)으로 대별된다. 배수형은 터널의 아치부와 측벽부에만 방수막을 설치하고 이의 배면과 바닥으로부터 유입되는 지하수를 배수공을 통하여 배수처리하는 방식이며 경제성과 시공성이 우수하여 대부분의 도로 터널 및 지하철 등에 적용되어 왔다. 방수형은 터널의 주변장 전체를 방수시공하여 터널내로 유입되는 지하수를 완전히 차단하는 방법으로서, 이러한 방수형 터널은 경제성과 시공성은 불리하나, 지하수위 저하에 따른 압밀침하나 생태계 파괴 방지, 터널의 장기적 환경보전 및 운영유지비 감소 등의 이유로 최근 상당수의 도심지 지하철 터널에 계획되어 시공중에 있다. (중략)

  • PDF

Strength properties of arch type laminated lumber produced from domestic small lumbers (소경재를 이용한 집성 arch재의 강도 특성)

  • 박준철;홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.73-80
    • /
    • 2001
  • This study was carried out to investigate the strength and technical feasibility of arch type laminated lumber from the domestic small lumbers(Pinus densiflora S. et Z. and Larix kampferi Catt.). Arch type lumbers manufactured with different compositions of laminae. It was designed to improve the strength and stiffness. Strength S. rt Z. U;timate load Carr. laminated lumbers were higher than that of the Pinus densiflora S. et Z. Ultimate load of 7-ply laminated lumbers were 2 times higher than the 5-ply laminated lumbers. The strength of finger jointed lumbers were found to be about 15.8% less than that of the no joint lumber. One solution for this problem is to use veneer as face lamina. The veneer laminated lumbers was considerably greater than that of the non-veneer laminated lumbers. It was suggested that this small lumber may be a candidate for high valued product member to provide the proper combination of laminae.

  • PDF

A Study on Stability of Arch-Type Vinyl House Structures (아치형 비닐하우스 구조의 안정성 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.81-88
    • /
    • 2014
  • Construction of vinyl house structures is increasing because they do not have a large cross section as non-permanent structures. Vinyl house structures are apt to collapse by snow load because they have a small size member as a temporary building. Therefore, it is very important to ensure not only the stiffness of the individual member, but also the overall stability of three-dimensional arch-type vinyl house structures. The purpose of this study is to estimate the stability of arch-type vinyl house structures that have a various curvature under the vertical load such as snow load. As a result of the study, the buckling load of V27 model is the largest, and the values of buckling load have a tendency to increase with increasing H(height of arch) in the case of $H{\leq}2.75m$, but to decrease with increasing H in the case of $H{\geq}2.75m$.

Free Vibrations of Arches in Rectangular Coordinates (직교좌표계에 의한 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Ahn, Dae-Soon;Kim, Young-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.971-976
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in rectangular coordinates rather than in polar coordinates, in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Rectangular coordinates. The lowest four natural frequency parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system parameters: the rise to chord length ratio, the span length to chord length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.

  • PDF

Structural Characteristics of Steel-Concrete Composite Plate Girder with Arch-Type Web Stiffener (아치형 복부판 보강재가 설치된 플레이트거더 강합성교의 구조적 거동특성)

  • Woo, Sang-Pyuk;Yoo, Jong-Ho;Lee, Hong-Kyu;Won, Yong-Seok;Kim, Sun-Hee;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • In this paper, we present the result of analytical investigation pertaining to the structural behavior of steel-concrete composite plate girder with arch-type web stiffener. In the arch-type web stiffener located in the compression side of web, infill concrete is cast to strengthen the arch-type stiffener and also to exert resisting force against compression force. This type of composite steel-concrete plate girder bridge is built and is in service. To understand the behavior thoroughly, analytical parametric study was conducted by using the finite element method. As a result it was found that the effect of arch-type stiffener with infill concrete is considerable for the design of such type composite girder bridge.

Numerical Simulation of Arch-type Submarine Cable Protector under Anchor Collision (아치형 해저 케이블 보호 구조물의 앵커 충돌 수치 시뮬레이션)

  • Woo, Jin-Ho;Na, Won-Bae;Kim, Heon-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.96-103
    • /
    • 2009
  • In 2006, Jeju Island in South Korea experienced a crisis, no electricity for three hours anywhere in the entire island. This incident was caused by a domino effect that occurred after one of the submarine power cables connecting the island to Haenam, a coastal city on the mainland, was damaged by an external load, probably from a ship anchor or a steel pile being used in marine farming. This study presents a collision analysis of a new submarine power cable protector called arch type reinforced concrete. For the analysis, a dynamic finite element program, ANSYS AUTODYN, was used to examine the displacement and stress of the submarine power cable protector using different material models (RHT concrete model, Mohr.Coulomb concrete model). In addition, two reinforcing bar spacings, 75 mm and 150 mm, were considered. From the analyses, the effects of the parameters (concrete model and spacing) on the results (displacement and stress) were analyzed, and the relations between the damage and parameters were found.

Effects of the Distance between Houses on the Wind Force Coefficients on the Single-span Arched House (아치형 단동하우스의 동간거리가 풍력계수에 미치는 영향)

  • 이현우;이석건
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.76-85
    • /
    • 1993
  • The purpose of this study was to analyze the wind force distribution on the two single-span arched plastic house depending upon the house spacing and wind direction, which may provide the fundamental criteria for the structural design. In order to specify the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients and the drag force coefficients were estimated from the wind tunnel test data. The results obtained are as follows : 1. At the wind direction of 90$^{\circ}$, there was a typical span interval at which the maximum negative pressure was occured at the edge of the inside walls. 2. In the consideration of wind loads, the wind force coefficients estimated from independent single-span arched plastic house should not be directly applied to the structural design on the double houses separated. 3. The average maximum negative wind force on the inside walls was occured at the wind direction of 90$^{\circ}$, and the variations depending on the span intervals was not significant. 4. The average maximum drag force was occured at the wind direction of 300, and the magnitude of drag force was more significant at the first house. As the distance between two houses was increased, the drag force was slightly increased for every wind direction.

  • PDF

Comparison of Maximum Section Forces of Greenhouse Structures with respect to Roof Types (원예시설의 지붕형식에 따른 단면력의 비교분석)

  • 이석건;이현우;손정억;이종원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.84-89
    • /
    • 1994
  • Section forces of greenhouse structures were studied to suggest basic information for the structural design of greenhouses with respect to roof types and support conditions. Structural analyses were performed for pitched and arched roof, and fixed and hinged support under snow loads and wind loads. Followings are the results obtained and are expected to be useful in determining the span length and roof type in greenhouse design. 1. Special considerations might he required for roof design at the heavy snow region, and for the support design at the strong wind region, respectively. 2. Single-span structure was found to be stronger than multi-span structure under the snow load, but the former was found to be weaker than the latter under the wind load. 3. Arched roof structure was expected to be safer than pitched roof structure if the dimensions and loads were equal. 4. Greenhouse orientation and roof slope should be considered in optimum structural design of grrenhouses, because these two factors are closely related with the influence of wind load and snow load.

  • PDF

Study on Material and Structural Size of 1-2W Type Greenhouse by Structural Analysis Simulation (농가보급형 비닐하우스 1-2W형의 구조분석 시뮬레이션에 의한 규격 개선 연구)

  • Lee, Si-Young;Kim, Hyun-Hwan;Jeon, Hee;Kwon, Young-Sam;Lee, Ki-Myung
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.89-93
    • /
    • 1998
  • 농가보급형 비닐온실(1-2W형)은 농촌진흥청에서 '92년 4월에 폭 7m, 측고 2.7m, 동고 4.8m로 개발하여 각 시ㆍ군에 설계서를 배포하였으며 '95년 3월 자재일부와 동고의 높이를 수정하였고, 개량아치단동형(1-lS)과 '94년 6월에 개발된 한국형 유리온실과 함께 농민들이 가장 선호하는 시설형태 중 하나이다. (중략)

  • PDF

Effects of Permanent Magnet Configuration on the Performance of the BLDC Motor in a Satellite Actuator (위성 구동기용 BLDC Motor 자석 형태 및 배치에 따른 성능)

  • Lee, Jung-Hyung;Lee, Jun Yong;Lee, Hun Jo;Oh, Hwa-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2018
  • The torque ripple that is generated by the irregularity of magnetic flux density on the BLDC motor in a satellite actuator degrades the satellite attitude control performance. In this paper, the performance analysis of permanent magnet configurations (shape, arrangement, and air gap) is simulated by the Finite Element Method (FEM) to find the appropriate combination of the configuration. The configuration is chosen by comparing between rectangular and arc-shaped permanent magnets and single-arrangement and dual-arrangement magnets. The performance is verified by a prototype.