• Title/Summary/Keyword: 아치구조물

Search Result 108, Processing Time 0.027 seconds

Vibration Analysis for Circular Arches with Variable Cross-section by using Differential Transformation and Generalized Differential Quadrature (미분변환법과 일반화 미분구적법을 이용한 가변단면 원호 아치의 진동 해석)

  • Shin, Young Jae;Kwon, Kyung Mun;Yun, Jong Hak;Yoo, Yeong Chan;Lee, Ju Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.81-89
    • /
    • 2004
  • The vibration analysis of the circular arch as a member of a structure has been an important subject of mechanics due to its various applications to many industrial fields. In particular, circular arches with variable cross section are widely used to optimize the distribution of weight and strength and to satisfy special architectural and functional requirements. The Generalized Differential Quadrature Method (GDQM) and Differential Transformation Method (DTM) were recently proposed by Shu and Zou, respectively. In this study, GDQM and DTM were applied to the vibration analysis of circular arches with variable cross section. The governing equations of motion for circular arches with variable cross section were derived. The concepts of Differential Transformation and Generalized Differential Quadrature were briefly introduced. The non-dimensionless natural frequencies of circular arches with variable cross section were obtained for various boundary conditions. The results obtained using these methods were compared with those of previous works. GDQM and DTM showed fast convergence, accuracy, efficiency, and validity in solving the vibration problem of circular arches with variable cross section.

Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm (유전자 알고리즘을 이용한 닐센아치교의 최적설계기법)

  • Lee, Kwang Su;Chung, Young Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.361-373
    • /
    • 2009
  • Using the genetic algorithm, the optimal-design technique of the Nielsen arch bridge was proposed in this paper. The design parameters were the arch-rise ratio and the steel weight ratio of the Nielsen arch bridge, and optimal-design techniques were utilized to analyze the behavior of the bridge. The optimal parameter values were determined for the estimated optimal level. The parameter determination requires the standardization of the safety, utility, and economic concepts as the critical factors of a structure. For this, a genetic algorithm was used, whose global-optimal-solution search ability is superior to the optimization technique, and whose object function in the optimal design is the total weight of the structure. The constraints for the optimization were displacement, internal stress, and time and space. The structural analysis was a combination of the small displacement theory and the genetic algorithm, and the runtime was reduced for parallel processing. The optimal-design technique that was developed in this study was employed and deduced using the optimal arch-rise ratio, steel weight ratio, and optimal-design domain. The optimal-design technique was presented so it could be applied in the industry.

Seismic Response Control of Arch Structures using Semi-active TMD (준능동 TMD를 이용한 아치구조물의 지진응답제어)

  • Kang, Joo-Won;Kim, Gee-Cheol;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • In this study, the possibility of seismic response control of semi-active tuned mass damper (TMD) for spatial structures has been investigated. To this end, an arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. A TMD and semi-active TMD were applied to the example arch structure and the seismic control performance of them were evaluated based on the numerical simulation. In order to regulate the damping force of the semi-active TMD, groundhook control algorithm, which is widely used for semi-active control, was used. El Centro (1940) and Northridge (1994) earthquakes and harmonic ground motion were used for performance evaluation of passive TMD and semi-active TMD. Based on the analytical results, the passive TMD could effectively reduce the seismic responses of the arch structure and it has been shown that the semi-active TMD more effectively decreased the dynamic responses of the arch structure compared to the passive TMD with respect to all the excitations used in this study.

  • PDF

Study on numerical analysis for cable anchorage device of arch type cable stayed bridge for light railroad (경전철용 아치형 사장교의 보강형 정착구에 대한 수치해석 연구)

  • Kong, Byung-Sueng;Jeong, Ji-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.619-622
    • /
    • 2011
  • 케이블 정착구 검토를 위해서 사장교 전 체계를 모델링하는 것은 전체모델링 해석시 많은 노력과 시간이 요구되고 해석결과의 분석 또한 어려움이 많다. 따라서 문제가 예상되는 부분만을 국부 상세해석하여 구조적 거동을 정확히 파악하는 것이 필요하다. 케이블 정착부에는 여러 보강재들로 구성되어 있어 국부해석에 어려움이 있다. 따라서 실제와 가능한 한 근접하도록 모델링을 하고 전체 구조물의 거동을 국부 상세모델에 적적히 반영할 수 있도록 경계조건을 설정하는 것이다. 본 논문에서는 부산 지하철 4호선의 아치형 사장교를 국내 범용 구조해석 프로그램인 MIDAS/CIVIL을 이용하여 아치리브와 거더정착구 모델링을 실시하였다. 해석 후 해석의 타당성을 검토하고 정착부의 안전성을 확보할 수 있는지 검토 분석 하고자 한다.

  • PDF

Behavior of Braced Rib Arch in Shallow Tunnel Excavated by Semi-Cut and Cover Method (반개착식으로 굴착한 천층터널에서 Braced Rib Arch의 거동)

  • An, Joung-Hwan;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.419-425
    • /
    • 2009
  • Recently, the number of shallow tunnel construction increases to improve the structural safety and environment-friendliness. In Semi-Cut and Cover Method, ground is excavated to the crown arch level and braced rib arch is set to backfill before the excavation of lower face. Semi-Cut and Cover Method is proposed to solve the problems occurred by the conventional Cut and Cover Method, such as unstability, high-cost and the large cutting slope to be reinforced. In this paper, the behaviors of Braced Rib Arch in shallow tunnel excavated by semi-cut and cover method was studied. Model tests in 1:10 Scale were performed in real construction sequences. The distance between supports of rib arch was 1.8 m and the length of spacer was 1.0 m. the size of test pit was 4.0 m (width)$\times$3.3 m (length) 4.0 m (height) in dimension. Tests results show that backfill load acting on arch was smaller than that in the conventional Open-Cut Method.

Dynamic Analysis for a Arch Railway Bridge Considering Real Train Loads (실 열차하중을 고려한 아치 교량의 동적해석)

  • Kim, Jung-Hun;Lee, Joo-Tak;Lee, Myeong-Sup;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • 고속열차(KTX)를 지지하는 구조물은 차량과 지속적인 접촉을 갖는 구조를 가지고 있으므로 고속열차의 운행 안정성(동적거동)을 고려한 설계가 필요하다. 또한, 상부 구조물은 고속열차의 연행이동집중하중을 지지하며, 이러한 하중조건을 갖는 차량이 운행할 때 상부 구조물은 설계 기준사항들을 만족해야한다. 호남고속철도 설계지침에 의하면 고속열차(KTX)의 운행 안정성을 평가하기 위한 항목들로 대상 교량의 고유진동수, 상판 수직가속도, 면틀림 그리고 승차감을 고려한 연직처침 등이 요구된다. 따라서, 본 연구에서는 KTX의 실 열차하중을 고려하여 연행이동집중하중으로 아치 교량의 동적거동을 검토하였으며, 호남고속철도 설계지침을 적용하여 대상 교량의 운행 안정성을 평가하였다.

  • PDF

Free Vibrations of Arches in Cartesian Coordinates (직교좌표계에 의한 아치의 자유진동)

  • Lee, Byoung-Koo;Lee, Yong-Soo;Kim, Il-Jung;Choi, Kou-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.970-978
    • /
    • 2002
  • The differential equations governing free vibrations of the elastic arches with unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates. in which the effect of rotatory inertia is included. Frequencies and mode shapes are computed numerically for parabolic arches with both clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are made to validate theories and numerical methods developed herein. The convergent efficiency is highly improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural frequency parameters are reported, with and without the rotatory inertia, as functions of three non-dimensional system parameters the rise to chord length ratio. the span length to chord length ratio, and the slenderness ratio. Also typical mode shapes of vibrating arches are presented.

Behavior of arch slab in the shallow tunnel constructed perpendicular to slope by semi-cut-and-cover method (편경사지에 굴착한 반개착식 천층터널에서 아치슬래브의 거동)

  • Yang, Jae-Won;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Recently, the number of shallow tunnel construction increases to improve the structural safety and environment-friendliness. In semi-cut-and-cover Method, ground is excavated to the crown arch level and arch slab is set to backfill before the excavation of lower face. In this study, laboratory model tests was performed to clarify the behavior of the arch slab constructed perpendicular to the slope. Results show that Arch slab is affected by perpendicular to the slope and bedrocks. Negative moment at the upper part of the arch slab at hillside and positive moment at the upper part at the other side are generated as perpendicular to the slope increases. Reaction load at the hillside support was larger than that at the other side.

Seismic analysis and dynamic behavior characterization of rib-reinforced pre-cast tunnels (리브 보강 프리캐스트 터널의 내진 해석 및 동적거동 특성 파악)

  • Song, Ki-Il;Jung, Sung-Hoon;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.287-301
    • /
    • 2009
  • The novel cut-and-cover tunnel construction method using rib-reinforced pre-cast arch segments has been recently developed and applied for practice to secure a structural stability of high covering and wide width section tunnels. Cut-and-cover tunnels are usually damaged by the seismic behavior of backfill grounds in case of a low covering condition. Seismic analyses are performed in this study to characterize the dynamic behavior of rib-reinforced pre-cast arch cut-and-cover tunnels. Seismic analyzes for 2 lane cast-in-place and rib-reinforced pre-cast arch cut-and-cover tunnels are carried out by using the commercial FDM program (FLAC2D) considering various field conditions such as the covering height embankment slope and excavation slope. It can be concluded that the amplification of seismic wave is reduced due to an increase in the structural stiffness induced by rib-reinforcement. The results show that the rib-reinforced pre-cast arch cut-and-cover tunnels are more effective against the seismic loading, compared to the cast-in-place cut-and-cover tunnels.

Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures (지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향)

  • Lee, Jungwhee;Choi, Keunki;Kim, Dongseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.287-296
    • /
    • 2019
  • In this study, the effect of ground boundary conditions on the evaluation of blast resistance performance of precast arch structures was evaluated by a numerical analysis method. Two types of boundary conditions, namely, fixed boundary conditions and a perfectly matched layer (PML) were applied to numerical models. Blast loads that were much higher than the design load of the target structure were applied to compare the effects of the boundary conditions. The distribution and path of the ground explosion pressure, structural displacement, fracture of concrete, stress of concrete, and reinforcing bars were compared according to the ground boundary condition settings. As a result, the reflecting pressure shock wave at the ground boundaries could be effectively eliminated using PML elements; furthermore, the displacement of the foundation was reduced. However, no distinct difference could be observed in the overall structural behavior including the fracture and stress of the concrete and rebar. Therefore, when blast simulations are performed in the design of protective structures, it is rational to apply the fixed boundary condition on the ground boundaries as conservative design results can be achieved with relatively short computation times.