• 제목/요약/키워드: 아차드 마멸모델

검색결과 2건 처리시간 0.017초

등속조인트 외륜 열간단조의 금형수명 향상을 위한 단조공정 유한요소해석 (FE Analysis of Forging Process for Improving Tool Life in Hot Forging of CV Joint Outer Race)

  • 김용조
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.56-62
    • /
    • 2014
  • During the hot forging process, the most common cause of tool failure is wear. Tool wear results in the gradual loss of part tolerances, after which eventually the tool must be replaced or repaired. In order to maximize the lifetimes of forging tools, it is important to investigate the wear mechanisms of these tools. In this study, the hot forging of the outer race of an automotive constant-velocity joint was analyzed by a finite element method to investigate the wear distribution, especially the amount and location of the maximum expected wear damage, using Archard's wear model, which was modified considering the forging temperature. Forging analyses were carried out after modifying blocker forging tools based on established versions. The modified blocker tools resulted in an increase in the tool life up to 31% with a finisher punch.

마멸에 기초한 비대칭 열간단조 금형수명 예측에 관한 유한요소 시뮬레이션 (Finite Element Simulation on Prediction of an Asymmetric Hot Forging Die Life Based on Wear)

  • 최창혁;정경빈;김용조
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.47-54
    • /
    • 2013
  • The main cause of die failure in hot forging is wear. Die wear directly generates the gradual loss of part tolerances, thereby causing deterioration in the dimensional accuracy of a forged part. It is very important to estimate forging cycles, called as die life, at which the die should be repaired or replaced. In this study, in order to estimate the hot forging die life, the finite element simulation of wear on an asymmetric part like a ball joint socket used in vehicle was carried out based on Archard's model. Finite element simulation results were compared with wear amounts of a used die that were measured using a contact stylus profilometer. The simulation results were in relatively good agreement with measurements obtained from the virtual die which was used by 7,000 forging cycles in a forging industry. Consequently, the die life in the hot forging of the ball joint socket was estimated by 10,500 forging cycles on the finisher die.