• Title/Summary/Keyword: 아이템 기반 추천

Search Result 148, Processing Time 0.028 seconds

Multimedia Recommender System Based on Contrastive Learning with Modality-Reflective View (모달리티 반영 뷰를 활용하는 대조 학습 기반의 멀티미디어 추천 시스템)

  • SoHee Ban;Taeri Kim;Sang-Wook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.635-638
    • /
    • 2024
  • 최근, 대조 학습 기반의 멀티미디어 추천 시스템들이 활발하게 연구되고 있다. 이들은 아이템의 다양한 모달리티 피처들을 활용하여 사용자와 아이템에 대한 임베딩들(뷰들)을 생성하고, 이들을 통해 대조 학습을 진행한다. 학습한 뷰들을 추천에 활용함으로써, 이들은 기존 멀티미디어 추천 시스템들보다 상당히 향상된 추천 정확도를 획득했다. 그럼에도 불구하고, 우리는 기존 대조 학습 기반의 멀티미디어 추천 시스템들이 아이템의 뷰들을 생성하는 데에 아이템의 모달리티 피처들을 올바르게 반영하는 것의 중요성을 간과하며, 그 결과 추천 정확도 향상에 제약을 갖는다고 주장한다. 이는 아이템 임베딩에 아이템 자신의 모달리티 피처를 올바르게 반영하는 것이 추천 정확도에 향상에 도움이 된다는 기존 멀티미디어 추천 시스템의 발견에 기반한다. 따라서 본 논문에서 우리는 아이템의 모달리티 피처들을 올바르게 반영할 수 있는 뷰(구체적으로, 모달리티 반영 뷰)를 통해 대조 학습을 진행하는 새로운 멀티미디어 추천 시스템을 제안한다. 제안 방안은 두 가지 실세계 공개 데이터 집합들에 대해 최신 멀티미디어 추천 시스템보다 6.78%까지 향상된 추천 정확도를 보였다.

Enhancing Method of Collaborative Filtering using Item-Based Trust (아이템 기반의 신뢰도를 이용한 효율적인 협력적 여과 방법)

  • Ji Ae-ttie;Kim Heung-Nam;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.661-663
    • /
    • 2005
  • 상업적인 추천 시스템에서 폭넓게 사용되고 있는 사용자 기반의 협력적 여과 방법 (User-Based Collaborative Filtering)은 확장성과 실시간 성능에 관련된 많은 제약을 갖는다. 이와 같은 맹점을 해결하기 위해 제안된 모델 기반의 협력적 여과 방법 (Model-Based Collaborative Filtering)은 추천은 매우 빠르지만, 모델을 구축하는 데 많은 시간이 소요되며, 사용자 기반의 협력적 여과 방법에 비해 추천의 질이 떨어지는 경향이 있다. 또한, 과거에 추천되있던 히스토리를 바탕으로 한 신뢰도 정보를 고려하는 추천 시스템은 추천의 정확도를 향상시키기 위한 다양한 연구 가운데 하나이다. 본 논문에서는 사용자 기반의 협력적 여과 방법의 문제점을 개선하고 추천의 정확도를 높이기 위해, 유사한 아이템의 모델을 미리 구축하는 아이템 기반의 협력적 여과 방법 (Item-Based Collaborative Filtering)에 각 아이템의 추천에 대한 신뢰도를 고려하여 보다 효율적인 추천 시스템을 제안하고자 한다. 또한, 기존 추천 시스템과의 성능 비교 실험을 통해 제안한 방법의 타당성을 제시한다.

  • PDF

A Recommender Agent using Association Item Trees (연관 아이템 트리를 이용한 추천 에이전트)

  • Ko, Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.4
    • /
    • pp.298-305
    • /
    • 2009
  • In contrast to content_based filtering systems, collaborative filtering systems not only don't contain information of items, they can not recommend items when users don't provide the information of their interests. In this paper, we propose the recommender agent using association item tree to solve the shortcomings of collaborative filtering systems. Firstly, the proposed method clusters users into groups using vector space model and K-means algorithm and selects group typical rating values. Secondly, the degree of associations between items is extracted from computing mutual information between items and an associative item tree is generated by group. Finally, the method recommends items to an active user by using a group typical rating value and an association item tree. The recommender agent recommends items by combining user information with item information. In addition, it can accurately recommend items to an active user, whose information is insufficient at first rate, by using an association item tree based on mutual information for the similarity between items. The proposed method is compared with previous methods on the data set of MovieLens recommender system.

A Study on Collaborative Filtering Recommender system based on Item Knowledge (아이템 정보 기반 협업 필터링 추천 시스템 연구)

  • Yang, Yeong-Wook;Yun, You-Dong;Lim, Heui-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.439-441
    • /
    • 2017
  • Matrix factorization은 사용자의 아이템 선호도를 통해 아이템을 추천해주는 성공적인 기술 중 하나이다. 이 기법은 사용자-아이템의 선호도 행렬을 채우는 것을 목표로 한다. 이 목표를 달성하기 위해 사용자-아이템의 선호도 행렬을 사용자 행렬(user latent factor)와 아이템 행렬(item latent factor)로 분해하고, 각 행렬에 대해 추론하여 완성된 사용자-아이템의 선호도 행렬을 추론한다. 하지만 Matrix factorization은 아이템의 수가 많고, 아이템에 대한 사용자들의 선호도 데이터가 적을 때 성능이 제한된다. 또한 새로운 아이템이 추가되었을 때, 새로운 아이템에 대한 사용자들의 선호도 정보가 없기 때문에 새로운 아이템이 추천되지 않는다는 문제를 가진다. 이를 해결하기 위해 본 논문에서는 아이템에 대한 부가적인 정보인 아이템 간의 유사도 정보와 아이템의 시나리오 정보의 유사도를 모델링하여 기존의 전통적인 Matrix factorization에 추가하는 아이템 정보 기반 추천 시스템을 제안한다.

Evaluating the Quality of Recommendation System by Using Serendipity Measure (세렌디피티 지표를 이용한 추천시스템의 품질 평가)

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.89-103
    • /
    • 2019
  • Recently, various approaches to recommendation systems have been studied in terms of the quality of recommendation system. A recommender system basically aims to provide personalized recommendations to users for specific items. Most of these systems always recommend the most relevant items of users or items. Traditionally, the evaluation of recommender system quality has focused on the various predictive accuracy metrics of these. However, recommender system must be not only accurate but also useful to users. User satisfaction with recommender systems as an evaluation criterion of recommender system is related not only to how accurately the system recommends but also to how much it supports the user's decision making. In particular, highly serendipitous recommendation would help a user to find a surprising and interesting item. Serendipity in this study is defined as a measure of the extent to which the recommended items are both attractive and surprising to the users. Therefore, this paper proposes an application of serendipity measure to recommender systems to evaluate the performance of recommender systems in terms of recommendation system quality. In this study we define relevant or attractive unexpectedness as serendipity measure for assessing recommendation systems. That is, serendipity measure is evaluated as the measure indicating how the recommender system can find unexpected and useful items for users. Our experimental results show that highly serendipitous recommendation such as item-based collaborative filtering method has better performance than the other recommendations, i.e. user-based collaborative filtering method in terms of recommendation system quality.

A Study on Sparsity Effect about MAE in Collaborative Filtering (협력적 필터링에서 희소성에 따른 MAE 향상에 관한 연구)

  • Kim, Sun-Ok;Lee, Seok-Jun;Lee, Hee-Choon
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.616-620
    • /
    • 2007
  • 전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.

  • PDF

Recommendation Method using Naive Bayesian algorithm in Hybrid User and Item based Collaborative Filtering (사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법)

  • 김용집;정경용;한승진;고종철;이정현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.184-186
    • /
    • 2003
  • 기존의 사용자 기반 협력적 필터링이 가지는 단점으로 지적되었던 희박성과 확장성의 문제를 아이템 기반 협력적 필터링 기법을 통하여 개선하려는 연구가 진행되어 왔다. 실제로 많은 성과가 있었지만. 여전히 명시적 데이터를 기반으로 하기 때문에 희박성이 존재하며, 아이템의 속성이 반영되지 않는 문제점이 있다. 본 논문에서는 기존의 아이템 기반 협력적 필터링의 문제점을 보완하기 위하여 사용자와 아이템의 혼합 협력적 필터링에서 Naive Bayesian 알고리즘을 이용한 추천 방법을 제안한다. 제안된 방법에서는 각 사용자와 아이템에 대한 유사도 검색 테이블을 생성한 후, Naive Bayesian 알고리즘으로 아이템을 예측 및 추천함으로써, 성능을 개선하였다. 성능 평가를 위해 기존의 아이템 기반 협력적 필터링 기술과 비교 평가하였다.

  • PDF

Selecting Marketing Domains and Customer Groups by Pre-evaluation on Recommendation (추천 선행평가에 의한 마케팅 도메인 및 고객군 선정)

  • 윤찬식;이수원
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.220-229
    • /
    • 2002
  • 협력적 추천 기법은 유사한 이웃의 선호도를 이용하여 고객에게 개인화된 아이템을 추천해 주는 방법으로 비교적 높은 정확도를 보이며 추천 시스템의 중심으로 연구되어져 왔다. 그러나, 지금까지의 추천 시스템은 도메인의 특성을 제대로 고려하지 못한채 추천을 시행함으로써 특정 도메인에서 추천의 정확도가 떨어지는 문제점이 발생하였다. 이러한 문제점들을 보완하기 위하여 본 논문에서는 평균 고객 유사도, 평균 아이템 유사도, 밀집도 등의 추천 선행 평가 척도를 제안하고, 추천 선행평가 척도와 추천의 정확도와의 상관관계를 보이며, 이를 이용하여 짧은 수행시간 안에 추천 적용이 가능한 마케팅 도메인 및 고객군을 선정하는 방법을 제시한다.

  • PDF

A Music Recommendation System by Using Graph-based Collaborative Filtering (그래프 기반 협동적 여과를 이용한 음악 추천 시스템)

  • Kim, Hyung-Il;Lee, Jin-Seok;Lee, Jeong-Hyun;Cho, Chin-Kwna;Kim, Kyoung-Sup;Kim, Jun-Tae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.51-54
    • /
    • 2006
  • 본 논문에서는 각 사용자들의 취향에 맞는 음악을 추천하는 개인화된 음악 추천 시스템을 소개한다. 추천 시스템이란 사용자의 선호도를 분석하고 아이템들에 대한 사용자의 선호도를 예측하여 영화, 음악, 기사, 책, 웹 페이지 등과 같은 아이템들을 추천하는 시스템을 말한다. 추천 시스템들에서 가장 많이 사용하고 있는 협동적 추천 방식은 선호도 데이터를 기반으로 유사한 사용자들을 찾고, 유사 사용자들의 선호도를 기반으로 예측을 수행하는 것으로서, 여러 장점들이 있으나 희소성(sparsity) 문제와 확장성(scalability) 문제에 대해 취약점을 가지고 있다. 아이템들의 전체 수에 비해 매우 적은 수의 아이템 선호도 데이터만 존재한다면 사용자들의 유사도를 계산하기가 어려우며, 또한 사용자의 수가 늘어날수록 유사도 계산에 걸리는 시간이 급격하게 늘어남으로써 수백만 사용자가 있는 웹 사이트 등에서 실시간 추천을 수행하기 어렵다. 본 논문에서 소개하는 음악 추천 시스템은 이러한 문제점들을 해결하기 위해 그래프 기반 협동적 여과 기법을 사용한다. 그래프 기반 협동적 여과 기법은 기존의 협동적 여과 기법들과 달리 아이템들 사이의 연관관계를 그래프 모델로 표현하고 저장함으로써 묵시적인 선호도 정보들을 누적하여 희소성 문제를 해결하고, 추천 아이템을 선정하는데 필요한 계산 시간을 크게 단축하여 대규모 데이터에서 실시간 추천을 가능하게 한다는 장점이 있다.

  • PDF

A Empirical Study on Recommendation Schemes Based on User-based and Item-based Collaborative Filtering (사용자 기반과 아이템 기반 협업여과 추천기법에 관한 실증적 연구)

  • Ye-Na Kim;In-Bok Choi;Taekeun Park;Jae-Dong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.714-717
    • /
    • 2008
  • 협업여과 추천기법에는 사용자 기반 협업여과와 아이템 기반 협업여과가 있으며, 절차는 유사도 측정, 이웃 선정, 예측값 생성 단계로 이루어진다. 유사도 측정 단계에는 유클리드 거리(Euclidean Distance), 코사인 유사도(Cosine Similarity), 피어슨 상관계수(Pearson Correlation Coefficient) 방법 등이 있고, 이웃 선정 단계에는 상관 한계치(Correlation-Threshold), 근접 N 이웃(Best-N-Neighbors) 방법 등이 있다. 마지막으로 예측값 생성 단계에는 단순평균(Simple Average), 가중합(Weighted Sum), 조정 가중합(Adjusted Weighted Sum) 등이 있다. 이처럼 협업여과 추천기법에는 다양한 기법들이 사용되고 있다. 따라서 본 논문에서는 사용자 기반 협업여과와 아이템 기반 협업여과 추천기법에 사용되는 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 알아보기 위해 성능 실험 및 비교 분석을 하였다. 실험은 GroupLens의 MovieLens 데이터 셋을 활용하였고 MAE(Mean Absolute Error)값을 이용하여 추천기법을 비교 하였다. 실험을 통해 유사도 측정 기법과 예측값 생성 기법의 최적화된 조합을 찾을 수 있었고, 사용자 기반 협업여과와 아이템 기반 협업여과의 성능비교를 통해 아이템 기반 협업여과의 성능이 보다 우수했음을 확인 하였다.