• Title/Summary/Keyword: 아세테이트

Search Result 812, Processing Time 0.02 seconds

Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation (기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과)

  • Do Youn Jun;Cho Rong Han;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • To examine the antitumor effect of proso millet grains, whether proso millet grains exert apoptotic activity against human cancer cells was investigated. When the cytotoxicity of 80% ethanol (EtOH) extract of proso millet grains was tested against various cancer cells using MTT assay, more potent cytotoxicity was observed against human breast cancer MDA-MB-231 cells than against other cancer cells. When the EtOH extract was evaporated to dryness, dissolved in water, and then further fractionated by sequential extraction using four organic solvents (n-hexane, methylene chloride, ethyl acetate, and n-butanol), the BuOH fraction exhibited the highest cytotoxicity against MDA-MB-231 cells. Along with the cytotoxicity, TUNEL-positive apoptotic nucleosomal DNA fragmentation and several apoptotic responses including BAK/BAX activation, mitochondria membrane potential (Δψm) loss, mitochondrial cytochrome c release into the cytosol, activation of caspase-8/-9/-3, and degradation of poly (ADP-ribose) polymerase (PARP) were detected. However, human normal mammary epithelial MCF-10A cells exhibited a significantly lesser extent of sensitivity compared to malignant MDA-MB-231 cells. Irrespective of Fas-associated death domain (FADD)-deficiency or caspase-8-deficiency, human T acute lymphoblastic leukemia Jurkat cells displayed similar sensitivities to the cytotoxicity of BuOH fraction, excluding an involvement of extrinsic apoptotic mechanism in the apoptosis induction. These results demonstrate that the cytotoxicity of BuOH fraction from proso millet grains against human breast cancer MDA-MB-231 cells is attributable to intrinsic apoptotic cell death resulting from BAK/BAX activation, and subsequent mediation of mitochondrial damage-dependent activation of caspase cascade.

Effects of Compounds Isolated from an Ethanol Extract of the Sclerotium of Wolfiporia hoelen on Osteoblast Differentiation and Osteoclast Formation (복령 균핵의 에탄올 추출물에서 분리한 화합물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Sora Lee;Seokju Kim;Bowook Moon;Sik-Won Choi;Rhim Ryoo;Hyung Won Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.73-87
    • /
    • 2024
  • Wolfiporia hoelen (Fr.) Y.C.Dai & V. Papp, commonly known as Poria cocos, is a significant traditional herb used for medicinal and culinary purposes Asian and European countries. Many studies have confirmed that the main components of W. hoelen have pharmacological activities and thatits extract has been shown to affect bone metabolism. This study aimed to the potential of a 50% ethanol extract of the sclerotium of W. hoelen for preventing and treating bone diseases. The ethanol extract was systematically fractionated using n-hexane, dichloromethane, and ethyl acetate. The dichloromethane fraction caused an approximately 29% increase in alkaline phosphatase (ALP) differentiation activity in C2C12 cells compared to the control. Four compounds isolated from this active dichloromethane fraction were identified through instrumental analysis and literature references as 3α-dehydrotrametenolic acid, ergosterol, pachymic acid, and dehydrotumulosic acid. All four compounds were evaluated at increasing concentrations (1, 3, 10, 30, and 100 μM) to determine their effects on ALP differentiation activity in C2C12 cells and RANKL-induced inhibition activity in bone marrow macrophages (BMMs), with a concurrent assessment of cytotoxicity at these concentrations. At a concentration of 3 μM, dehydrotumulosic acid caused a 160% increase in ALP activity, 24% higher than in the BMP-2 control. BMMs treated with dehydrotumulosic acid at concentrations between 10 and 100 μM showed a substantial 15-86% decrease in RANKL-induced inhibition activity compared to the control, with distinct patterns of RANKL inhibition and cytotoxicity observed at 10 μM. These findings suggest that the ethanol extract from the sclerotium of W. hoelen has potential to modulate bone-cell differentiation, while highlighting the possible benefits of dehydrotumulosic acid isolated from the dichloromethane fraction of W. hoelen for preventing and treating osteoporosis.