• 제목/요약/키워드: 아날로그 게이지

검색결과 6건 처리시간 0.017초

이미지 패치 기반 합성곱 신경망을 통한 아날로그 게이지 인식 (Analog Gauge Reading with Image Patch-based Convolutional Neural Network)

  • 견민수;백승한;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.95-98
    • /
    • 2022
  • 아날로그 게이지는 여전히 많은 산업 시설에서 사용되고 있지만, 게이지 값을 사람이 수동으로 읽기 때문에 정확히 측정하기 위해 많은 시간이 소모가 되는 문제점이 있다. 이러한 이유로 최근에는 합성곱 신경망을 사용하여 아날로그 게이지 값을 자동으로 인식하는 연구가 진행되고 있다. 그러나 대부분의 선행연구들은 게이지가 촬영된 영상을 그대로 입력으로 사용하고 있으며, 이러한 방법은 사람이 게이지를 읽는 과정을 고려하였을 때 불필요한 부분이 많다. 본 논문에서는 게이지 전체 이미지를 학습에 사용하지 않고, 게이지의 특정 이미지 패치 기반으로 아날로그 게이지 값을 인식하는 방법을 제안한다. 제안하는 방법은 게이지의 중심, 눈금의 최소, 최대, 지침의 좌표를 기반으로 이미지 패치를 생성하고 채널 축으로 병합하여 학습을 진행하였으며, 최종적으로게이지의 각도를 계산한다. 이는 게이지의 평균 각도 오차를 통해 제안한 방법이 게이지 값을 인식하는데 우수한 성능이 보였으며, 게이지 이미지에 장애물이 있는 경우에도 게이지 값을 인식할 수 있음을 확인하였다.

  • PDF

Convolutional Neural Network을 활용한 아날로그 게이지 분류 (Classification of Analog Gauge using Convolutional Neural Network)

  • 곽영태;유진규;김가희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제55차 동계학술대회논문집 25권1호
    • /
    • pp.275-277
    • /
    • 2017
  • 사물인터넷(Internet of things)의 발전과 함께 스마트 팩토리에 대한 관심이 증대되고 있다. 제조의 전 과정에서 발생하는 데이터를 실시간으로 수집하고 관리를 자동화하는 것이 스마트 팩토리의 목적이다. 그러나 공장에서는 현재까지도 많이 사용되는 아날로그 게이지를 관리하는 일은 사람의 노동력을 필요로 한다. 또한 아날로그 게이지는 쓰임새에 따라 모양과 형태가 매우 다양하다. 본 논문에서는 아날로그 게이지의 형태에 따라 분류하는 방법에 대해 제안한다. 제안하는 방법은 학습하기 위해 필요한 게이지 영상 데이터를 수집하고 나서 각 분류에 속하는 이미지 데이터를 CNN(Convolutional Neural Network) 딥러닝 기법으로 학습시킨 후, 각 분류에 해당하는 특징 정보를 추출하고 아날로그 게이지의 형태를 인식하는 방법을 제안한다.

  • PDF

이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구 (The Study of Digitalization of Analog Gauge using Image Processing)

  • 김선덕;배철오;박경민;지재훈
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.389-394
    • /
    • 2023
  • 근래 산업은 기계 자동화로 변화하고 있는 추세이며, 선박도 센서를 통해 기기 정보를 디지털 정보로 얻는다. 하지만 선박은 기기상태 점검을 위해 선원들이 정해진 시간마다 기관실을 순찰하며 기기들의 정보를 아날로그 게이지를 통해 확인하는데, 이는 순찰 중에 선원에게 발생할 수 있는 모든 안전 위험은 물론 시간과 기회비용 또한 소모된다. 자율이동로봇을 이용한 기관실 순찰 방법은 선원의 안전 위험은 물론 시간과 기회비용도 소모되지 않기 때문에 해결책으로 활발히 연구 중이다. 자율이동로봇을 이용한 아날로그 게이지 판독은 로봇이 게이지를 인식하기 위한 디지털화가 필요하다. 이를 위해 본 연구에서는 이미지 처리를 이용하였다. 아날로그 게이지 이미지는 이미지 전처리를 통해 노이즈 제거 및 특징을 부각 시켰다. 이미지 전처리를 완료한 이미지는 이미지 처리를 통해 아날로그 게이지의 중심점, 지침점, 최소값 및 최대값을 검출하였다. 이 점들을 연결한 직선을 통해 최소값부터 최대값까지의 각도 및 최소값부터 지침점까지의 각도를 획득하였다. 각도는 수식을 통해 현재 아날로그 게이지가 나타내고 있는 값을 디지털화하여 나타내었다. 실험을 통해 이미지 처리를 통한 아날로그 게이지의 디지털화가 잘되어 게이지의 현재 지시값을 근사하게 나타냄을 확인할 수 있었다. 본 알고리즘을 순찰로봇에 적용한다면 기관실 순찰을 위한 선원의 안전 위험 및 시간과 기회비용까지 보전 할 수 있을 것으로 사료된다.

자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별 (Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships)

  • 이현우;임정빈
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.410-418
    • /
    • 2023
  • 최근 자율운항선박 관련 연구개발과 상용화가 급속하게 진행됨과 동시에 자율운항선박의 감항성 확보를 위하여 선박에 설치된 각종 장비 상태를 원격지에서 검사할 수 있는 방법 역시 연구되고 있다. 특히, 각종 장비에 부착된 아날로그 게이지의 값을 영상처리를 통해 획득할 수 있는 방법이 주요 이슈로 부각되고 있는데, 그 이유는 영상처리 기법을 이용하면 이미 설치되었거나 또는 설치 예정인 다수의 장비를 변형 또는 변경하지 않고 비접촉식으로 게이지의 값을 검출할 수 있어서 장비의 변형 또는 변경에 따른 선급의 형식승인 등이 필요하지 않은 장점이 있기 때문이다. 본 연구의 목적은 잡음이 포함된 아날로그 게이지의 영상 중에서 동적으로 변하는 지시바늘의 객체를 식별하는데 있다. 지시바늘 객체의 위치는 정확한 게이지 값의 판독에 영향을 미치는데, 게이지 값을 정확하게 판독하기 위해서는 우선하여 지시바늘 객체의 식별이 중요하다. 지시바늘 객체의 식별 작업을 위한 영상은 비상소화펌프 모형에 부착한 수압 측정용 아날로그 게이지를 이용하여 획득하였다. 획득한 영상은 가우시안 필터와 임계처리 그리고 모폴로지 연산 등을 통해서 사전처리한 후, 허프 변환을 통해서 지시바늘의 객체를 식별하였다. 실험결과, 잡음이 포함된 아날로그 게이지의 영상에서 지시바늘의 중심과 객체가 식별됨을 확인하였고, 그 결과 본 연구에 적용한 영상처리 방법이 선박에 장착된 아날로그 게이지의 객체 식별에 적용될 수 있음을 알았다. 본 연구는 자율운항선박의 원격검사를 위한 하나의 영상처리 방법으로 적용될 것으로 기대된다.

선박의 원격검사를 위한 아날로그 게지이의 정량화에 관한 기초연구

  • 이현우;임정빈
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 추계학술대회
    • /
    • pp.105-106
    • /
    • 2023
  • 이 연구는 원격검사의 한 방법으로서, 특히 자율운항 선박에서 컴퓨터비전을 이용한 영상처리를 통한 원격 검사방법에 관한 것이다. 자율운항 선박은 자율화의 정도에 따라 다르지만, 선원이 승선하지 않거나 최소한의 선원만 승선하는 선박이므로 선박의 검사방법에 변화가 필요한 실정이다. 따라서 컴퓨터비전을 이용한 영상처리에 대한 이론적 배경을 바탕으로 원격검사 항목 중에서 아날로그 게이지의 정량화에 필요한 영상의 전처리 방법에 관한 연구이다. 아날로그 게이지의 정량화를 위해서 사용한 방법은 흑백처리, 가우시안필터, 임계화처리, 모폴로지 연산이다. 이 연구를 통하여 영상의 전처리 결과 배경과 객체를 비교적 명확하게 분류할 수 있었으며, 영상처리 과정 중 추가로 발생한 잡음을 효과적으로 제거할 수 있었다. 이를 통하여 영상에서 주된 객체인 지시바늘과 눈금판의 숫자를 인식에 필요한 이미지 전처리 방법을 제시하였으며, 나아가 컴퓨터 비전을 이용한 원격검사 방법은 아날로그 게이지뿐만 아니라 비상차단밸브, 통풍폐쇄장치, 고정식 소화장치 등 여러 방면에서 사용될 것이라 기대한다.

  • PDF

병렬 신경망 및 원근법 보정을 통한 다양한 게이지 인식 (Various Gauge Reading with Parallel Neural Network and Perspective Correction)

  • 견민수;라영준;백승한;박종일
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1346-1349
    • /
    • 2022
  • 본 논문에서는 병렬 신경망을 기반으로 원형 게이지뿐만 아니라 다양한 종류의 아날로그 게이지 값을 인식하는 방법을 제안한다. 아날로그 게이지는 다양한 산업 현장에 쓰이고 있지만, 게이지 값을 사람이 읽는 과정에 불필요한 시간이 소모가 되고 위급 상황에 빠른 대응이 힘들다. 이러한 문제로 인해 게이지 값을 디지털화하여 컴퓨터로 전송되는 데이터만으로 자동으로 모니터링을 하기 위한 방법이 필요하다. 제안하는 방법은 두 단계로 구성된다. 우선 입력된 게이지에 대해 원근법 보정을 수행하고, 게이지의 중심 좌표와 눈금의 최소, 최대, 지침에 대한 정규 벡터를 이용해 게이지의 각도를 계산한다. 이는 학습 데이터와 추가 학습한 실험 데이터의 적은 평균 각도 오차를 통해 제안한 방법이 실제 산업 현장에 잘 적응 가능함을 확인할 수 있다.

  • PDF