• Title/Summary/Keyword: 쓰시마 단층

Search Result 4, Processing Time 0.022 seconds

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

3D Seismic Data Interpretation of the Gorse II Area, Block VI-1, Offshore Southeast Korea (한국 대륙붕 VI-1광구 고래 II지역의 3D탄성파 자료해석)

  • Shin Kook Sun;Yu Kang Min;Kim Kun Deuk;Um Chang Lyeol
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.27-35
    • /
    • 1997
  • The Gorae II area is located in the southwestern margin of the Ulleung Basin, East Sea and corresponds to the Ulleung Trough. The survey of 3D seismic data in this area was performed to delineate the structural leads confirmed by the previous 2D seismic data. As a part of 3D interpretation, basement related structural movements and their relationship with the stratigraphy were studied. The study shows that eight sequences were identified which are genetically related to the tectonics and sediment supply in this area. The geologic structures characterizing the study area consist of : (1) block faults developed in the early stage of basin opening, (2) late Miocene thrusts, and (3) Pliocene wrench faults. The eight sequences consist of pre-rift (acoustic basement), syn-rift (Sequence $A_1, A_2$), post-rift (Sequence $B_1{\~}B_3$), syn-compressional sequence (Sequence C), and post-compressional sequence(Sequence D) from oldest to youngest. The time structure and isochron maps were constructed for each sequence and also used in seismic facies analysis and interpretation of sedimentary environment. The interpretation results reveal that the relative sea level changes caused by several stages of tectonic movements and sediment supply control the stratal and structural geometry of Ulleung basin.

  • PDF