• Title/Summary/Keyword: 쐐기형 에어포일

Search Result 2, Processing Time 0.021 seconds

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.

Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect (받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yoon, Myung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.