• Title/Summary/Keyword: 써모그램

Search Result 2, Processing Time 0.016 seconds

Effects of local body heating and cooling on thermogram analysis of the extremity with hot pack (핫팩을 이용한 인체의 부위별 가온과 제거가 사지부 피부 열화상도에 미치는 영향)

  • Kim, Soyoung;Hong, Kyunghi
    • Korean Journal of Human Ecology
    • /
    • v.23 no.6
    • /
    • pp.1205-1215
    • /
    • 2014
  • The purpose of this study was to investigate the effect of local heating and cooling of various body parts on the skin temperature of the exposed extremities including neck. Hot pack was used to warm up the body of seven participants for 15 minutes and it was removed as the temperature of the hot pack decreased after 15minutes of warming. Thermograms of body surface with and without hot pack were analyzed intensively to observe the efficiency of the local heating of shoulder, abdomen, back waist, and foot on the skin temperature of ten area of the subjects' body. The results indicated that the absolute skin temperature of front upper arm and thigh was significantly higher depending on the area of heating, especially, in case of abdomen and foot heating, which was not observed at the back of the body. The rate of skin temperature of extremities such as finger, palm and foot was significantly different depending on the body area of local heating. Generally, it was found that back waist heating was not efficient to warm up and maintain the skin temperature of the body after removing the hot pack.

The Change of Clothing Insulation and Surface Temperature Measured by Thermography with the Ease of Pattern (의복의 여유분에 따른 단열력의 변화와 Thermogram을 활용한 의복 표면 온도 특성 분석)

  • Lee, Byung-Cheol;Hong, Kyung-Hi;Lee, Ye-Jin
    • Korean Journal of Human Ecology
    • /
    • v.19 no.6
    • /
    • pp.1045-1052
    • /
    • 2010
  • Effects of the ease of pattern on the thermal conditions of clothing were investigated through the measurement of clothing surface temperatures using infrared thermography. Four vests with different pattern ease were worn by five male subjects. Surface temperature distribution on the clothing were then examined using a thermogram to view thermo-regulating characteristics affected by the ease of pattern. Representative surface temperatures were calculated based on the percentage of the surface area within a certain temperature range and the midpoint value of the corresponding area. Representative surface temperatures matches well to the thermal insulation value measured by thermal manikin. Results indicated that representative surface temperature could be a useful quantitative value if some simple calculations were to be used alongside accurate image processing.