• Title/Summary/Keyword: 심해저카메라

Search Result 4, Processing Time 0.02 seconds

Processing Underwater Images for Information Extraction of Deep Seabed Manganese Nodules as New Energy Resource (미래 에너지 자원탐사를 위한 수중카메라 영상처리에 의한 심해저 망간단괴 정보추출)

  • Lee, Dong-Cheon;Yun, Seong-Goo;Lee, Young-Wook;Ko, Young-Tak;Park, Cheong-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.679-688
    • /
    • 2009
  • Worldwide exploring and research for manganese nodules, as new energy resource, distributed on the deep seabed have progressed recently. Korea Ocean Research & Development Institute(KORDI) is a central organization to exploit the manganese nodules in the Pacific Ocean with 5,000m depth. Precise exploration is required for estimating amount of recoverable deposit, and this task could be accomplished by processing digital image processing techniques to the images taken by underwater camera system. Image processing and analysis provide information about characteristics of distribution of the manganese nodules. This study proposed effective methods to remove vignetting effect to improve image quality and to extract information. The results show more reliable information could be obtained by removing the vignetting and feasibility of utilizing image processing techniques for exploring the manganese nodules.

A Study on the Distributional Characteristics of Unminable Manganese Nodule Area from the Investigation of Seafloor Photographs (해저면 영상 관찰을 통한 망간단괴 채광 장애지역 분포 특성 연구)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee;Ko, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.173-182
    • /
    • 2007
  • It is well known that manganese nodules enriched with valuable metals are abundantly distributed in the abyssal plain area in the Clarion-Clipperton (C-C) fracture zone of the northeast Pacific. Previous studies using deep-sea camera (DSC) system reported different observations about the relation of seafloor topographic change and nodule abundance, and they were sometimes contradictory. Moreover, proper foundation on the estimation of DSC underwater position, was not introduced clearly. The variability of the mining condition of manganese nodule according to seafloor topography was examined in the Korea Deep Ocean Study (KODOS) area, located in the C-C zone. In this paper, it is suggested that the utilization of deep towing system such as DSC is very useful approach to whom are interested in analysing the distributional characteristics of manganese nodule filed and in selecting promising minable area. To this purpose, nodule abundance and detailed bathymetry were acquired using deep-sea camera system and multi-beam echo sounder, respectively on the seamount free abyssal hill area of southern part ($132^{\circ}10'W$, $9^{\circ}45'N$) in KODOS regime. Some reasonable assumptions were introduced to enhance the accuracy of estimated DSC sampling position. The accuracy in the result of estimated underwater position was verified indirectly through the comparison of measured abundances on the crossing point of neighboring DSC tracks. From the recorded seafloor images, not only nodules and sediments but cracks and cliffs could be also found frequently. The positions of these probable unminable area were calculated by use of the recorded time being encountered with them from the seafloor images of DSC. The results suggest that the unminable areas are mostly distributed on the slope sides and hill tops, where nodule collector can not travel over.

Review on Underwater Positioning for Deep Towing Vehicles (심해 예인 탐사장비의 위치 보정에 대한 고찰)

  • Lee, Gun-Chang;Ko, Young-Tak;Yoo, Chan-Min;Chi, Sang-Bum;Kim, Jong-Uk;Ham, Dong-Jin
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.335-339
    • /
    • 2005
  • The underwater positioning system is important in interpreting data that are acquired from towing vehicles such as the deep-sea camera (DSC) system. Currently, several acoustic positioning systems such as long baseline (LBL), short baseline (SBL), and ultra short baseline (USBL), are used for underwater positioning. The accurate position of DSC, however, could not be determined in a R/V Onnuri unequipped with any of these underwater positioning systems. As an alternative, the DSC position was estimated based on the topography of towing track and cable length in the cruises before 1999. The great uncertainties, however, were found in the areas of flat bottom topography. In the 2003 and 2004 cruises these uncertainties were reduced by calculating the position of DSC with the cable length and seafloor depth below the vessel. The Japanese cruises for Mn-nodule used a similar estimation method for the DSC positioning system with a CTD sensor. Although the latter can provide better information for the position of DSC, the USBL underwater positioning system is strongly recommended for establishing better positioning of DSC and other towing devices.

Characteristics of Seafloor Morphology and Manganese Nodule Occurrence in the KODES area, NE Equatorial Pacific (태평양 한국심해환경연구(KODES) 지역 해저변 지형과 망간단괴 분포특성)

  • Jung, Hoi-Soo;Ko, Young-Tak;Chi, Sang-Bum;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.323-337
    • /
    • 1999
  • Seafloor morphology and manganese nodule occurrence were studied in the Korea Deep-sea Environmental Study (KODES) area, northeast equatorial Pacific, to understand their relationship. Study area is composed of three elongated valleys and hills with about 100~200 m height along NNE-SSW direction. Valley region is generally flat. However, hill region is very rugged with big cliffs of about 100m height and small depressions of several tens of meters depth. Tectonic movement along the Clarion-Clipperton fracture zone, consequent formation of elongated abyssal hills and Valleys, erosion of siliceous bottom sediments by bottom currents, and dissolution of carbonate sediments on the abyssal hills below CCD result in the rugged morphology. Manganese nodule occurrence is closely related to the morphology of the study area; mostly rounded-shaped manganese nodules with about 5 cm diameter are abundant on the flat valley region, whereas irregular shaped nodules (or manganese crust) with less than 5 cm to about 1 m diameter occur on the hill. These results supports the previous reports that nodule abundance, composition, and morphology are variable both on regional and local small scales on the seafloor even within some abundant nodule provinces depending on oceanographic characteristics such as bathymetric features, surface sediment type, sediment thickness, and so on. We suggest that such oceanographic characteristics affect interrelatedly on the formation of manganese nodules, and tectonic movement of the Pacific plate ultimately constrain the nodule occurrence. A potential mining place in the KODES area seems to be the valley region, which is elongated to the NNW-SSE direction with 3-4 km width.

  • PDF