• Title/Summary/Keyword: 심층신경망 기술

Search Result 148, Processing Time 0.039 seconds

Brain-Inspired Artificial Intelligence (브레인 모사 인공지능 기술)

  • Kim, C.H.;Lee, J.H.;Lee, S.Y.;Woo, Y.C.;Baek, O.K.;Won, H.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.106-118
    • /
    • 2021
  • The field of brain science (or neuroscience in a broader sense) has inspired researchers in artificial intelligence (AI) for a long time. The outcomes of neuroscience such as Hebb's rule had profound effects on the early AI models, and the models have developed to become the current state-of-the-art artificial neural networks. However, the recent progress in AI led by deep learning architectures is mainly due to elaborate mathematical methods and the rapid growth of computing power rather than neuroscientific inspiration. Meanwhile, major limitations such as opacity, lack of common sense, narrowness, and brittleness have not been thoroughly resolved. To address those problems, many AI researchers turn their attention to neuroscience to get insights and inspirations again. Biologically plausible neural networks, spiking neural networks, and connectome-based networks exemplify such neuroscience-inspired approaches. In addition, the more recent field of brain network analysis is unveiling complex brain mechanisms by handling the brain as dynamic graph models. We argue that the progress toward the human-level AI, which is the goal of AI, can be accelerated by leveraging the novel findings of the human brain network.

Scalable Video Coding using Super-Resolution based on Convolutional Neural Networks for Video Transmission over Very Narrow-Bandwidth Networks (초협대역 비디오 전송을 위한 심층 신경망 기반 초해상화를 이용한 스케일러블 비디오 코딩)

  • Kim, Dae-Eun;Ki, Sehwan;Kim, Munchurl;Jun, Ki Nam;Baek, Seung Ho;Kim, Dong Hyun;Choi, Jeung Won
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-141
    • /
    • 2019
  • The necessity of transmitting video data over a narrow-bandwidth exists steadily despite that video service over broadband is common. In this paper, we propose a scalable video coding framework for low-resolution video transmission over a very narrow-bandwidth network by super-resolution of decoded frames of a base layer using a convolutional neural network based super resolution technique to improve the coding efficiency by using it as a prediction for the enhancement layer. In contrast to the conventional scalable high efficiency video coding (SHVC) standard, in which upscaling is performed with a fixed filter, we propose a scalable video coding framework that replaces the existing fixed up-scaling filter by using the trained convolutional neural network for super-resolution. For this, we proposed a neural network structure with skip connection and residual learning technique and trained it according to the application scenario of the video coding framework. For the application scenario where a video whose resolution is $352{\times}288$ and frame rate is 8fps is encoded at 110kbps, the quality of the proposed scalable video coding framework is higher than that of the SHVC framework.

Image Restoration using GAN (적대적 생성신경망을 이용한 손상된 이미지의 복원)

  • Moon, ChanKyoo;Uh, YoungJung;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.503-510
    • /
    • 2018
  • Restoring of damaged images is a fundamental problem that was attempted before digital image processing technology appeared. Various algorithms for reconstructing damaged images have been introduced. However, the results show inferior restoration results compared with manual restoration. Recent developments of DNN (Deep Neural Network) have introduced various studies that apply it to image restoration. However, if the wide area is damaged, it can not be solved by a general interpolation method. In this case, it is necessary to reconstruct the damaged area through contextual information of surrounding images. In this paper, we propose an image restoration network using a generative adversarial network (GAN). The proposed system consists of image generation network and discriminator network. The proposed network is verified through experiments that it is possible to recover not only the natural image but also the texture of the original image through the inference of the damaged area in restoring various types of images.

Research Trend Analysis for Fault Detection Methods Using Machine Learning (머신러닝을 사용한 단층 탐지 기술 연구 동향 분석)

  • Bae, Wooram;Ha, Wansoo
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.479-489
    • /
    • 2020
  • A fault is a geological structure that can be a migration path or a cap rock of hydrocarbon such as oil and gas, formed from source rock. The fault is one of the main targets of seismic exploration to find reservoirs in which hydrocarbon have accumulated. However, conventional fault detection methods using lateral discontinuity in seismic data such as semblance, coherence, variance, gradient magnitude and fault likelihood, have problem that professional interpreters have to invest lots of time and computational costs. Therefore, many researchers are conducting various studies to save computational costs and time for fault interpretation, and machine learning technologies attracted attention recently. Among various machine learning technologies, many researchers are conducting fault interpretation studies using the support vector machine, multi-layer perceptron, deep neural networks and convolutional neural networks algorithms. Especially, researchers use not only their own convolution networks but also proven networks in image processing to predict fault locations and fault information such as strike and dip. In this paper, by investigating and analyzing these studies, we found that the convolutional neural networks based on the U-Net from image processing is the most effective one for fault detection and interpretation. Further studies can expect better results from fault detection and interpretation using the convolutional neural networks along with transfer learning and data augmentation.

Automatic Object Extraction from Electronic Documents Using Deep Neural Network (심층 신경망을 활용한 전자문서 내 객체의 자동 추출 방법 연구)

  • Jang, Heejin;Chae, Yeonghun;Lee, Sangwon;Jo, Jinyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.11
    • /
    • pp.411-418
    • /
    • 2018
  • With the proliferation of artificial intelligence technology, it is becoming important to obtain, store, and utilize scientific data in research and science sectors. A number of methods for extracting meaningful objects such as graphs and tables from research articles have been proposed to eventually obtain scientific data. Existing extraction methods using heuristic approaches are hardly applicable to electronic documents having heterogeneous manuscript formats because they are designed to work properly for some targeted manuscripts. This paper proposes a prototype of an object extraction system which exploits a recent deep-learning technology so as to overcome the inflexibility of the heuristic approaches. We implemented our trained model, based on the Faster R-CNN algorithm, using the Google TensorFlow Object Detection API and also composed an annotated data set from 100 research articles for training and evaluation. Finally, a performance evaluation shows that the proposed system outperforms a comparator adopting heuristic approaches by 5.2%.

Deep Learning-based Analysis of Meat Freshness Measurement (고기 신선도 측정 데이터의 딥러닝 기반 분석)

  • Jang, Aera;Kim, Hey-Jin;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.418-427
    • /
    • 2020
  • The measurement of meat freshness at meat markets is important for the health of consumers. Currently a variety of sensors have been studied for the measurement of the meat freshness. Therefore, the analysis of sensor data is needed for the reduction of measurement errors. In this paper, we analyze the freshness measurement data of ten sensors based on deep learning. The measured data are composed of beef, pork and chicken, whose reliability and noise-robustness are examined by a deep neural network. Further, to search for multiple sensors better than a torrymeter, PCA (principle component analysis) is carried. Then, we validated that the performance of the three sensors outperforms the torrymeter in the experiment.

A Study on Radar Rainfall Prediction Method based on Deep Learning (딥러닝 기반의 레이더 강우예측 기법에 관한 연구)

  • Heo, Jae-Yeong;Yoon, Seong Sim;Lim, Ye Jin;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.128-128
    • /
    • 2022
  • 최근 호우의 빈도와 규모는 증가하는 추세이며 이에 따른 홍수 피해는 많은 피해를 야기하고 있다. 이러한 관점에서 홍수 피해에 대한 선제적 대응을 위한 요소로써 초단시간 강우예측 정보의 중요성은 매우 높다. 특히, 레이더 자료 기반의 강우예측은 수치예보모델과 비교하여 3시간 이내의 짧은 선행시간 이내의 높은 정확도를 갖고 있어 홍수예보에 다수 활용되고 있다. 최근에는 강우자료의 복잡한 관계와 특징을 고려하기 위해 딥러닝 기반의 강우예측 활용 사례가 증가하고 있으나 국내 적용 사례는 적어 관련 연구가 요구되는 실정이다. 본 연구에서는 레이더 강우를 활용한 딥러닝 기반의 강우예측 기법을 제안하고 이에 대한 적용성을 평가하고자 한다. 2차원 레이더 강우자료의 특징과 시계열 특성을 고려하기 위한 심층신경망 구조를 제안하였으며 기존 딥러닝 모형과의 비교를 통해 활용 가능성을 제시하고자 하였다. 적용 대상지역은 한강 유역으로 선정하였다. 정성적 평가를 위해 임계성공지수(CSI)를 활용하여 예측 강우에 대한 정확도를 평가하였으며 정량적 평가를 위해 예측 강우와 관측 강우의 상관관계를 분석하였다. 평가 결과, 제안하는 방법이 기존 모형과 비교하여 예측오차의 범위가 적고 강우의 위치 변화를 잘 반영하는 것으로 나타났다. 본 연구결과는 초단기간 강우예측 자료를 활용하는 홍수예보의 정확도 향상에 기여할 것으로 기대된다.

  • PDF

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Dust Prediction System based on Incremental Deep Learning (증강형 딥러닝 기반 미세먼지 예측 시스템)

  • Sung-Bong Jang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.301-307
    • /
    • 2023
  • Deep learning requires building a deep neural network, collecting a large amount of training data, and then training the built neural network for a long time. If training does not proceed properly or overfitting occurs, training will fail. When using deep learning tools that have been developed so far, it takes a lot of time to collect training data and learn. However, due to the rapid advent of the mobile environment and the increase in sensor data, the demand for real-time deep learning technology that can dramatically reduce the time required for neural network learning is rapidly increasing. In this study, a real-time deep learning system was implemented using an Arduino system equipped with a fine dust sensor. In the implemented system, fine dust data is measured every 30 seconds, and when up to 120 are accumulated, learning is performed using the previously accumulated data and the newly accumulated data as a dataset. The neural network for learning was composed of one input layer, one hidden layer, and one output. To evaluate the performance of the implemented system, learning time and root mean square error (RMSE) were measured. As a result of the experiment, the average learning error was 0.04053796, and the average learning time of one epoch was about 3,447 seconds.

Prediction of stock prices using deep neural network models including an emotional predictor based on online news by industrial groups (산업군별 온라인 뉴스에 기초한 감성 예측변수를 포함하는 심층 신경망모형에 의한 주가 예측)

  • Lim, Jun Hyeong;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.483-497
    • /
    • 2020
  • We used a deep neural network model for the prediction of the stock prices of Kia Motors and Shinsegae as listed in the KOSPI 100. We used an emotional variable derived from online news in addition to the various technical indicators most often used. The emotional variable used as a predictor variable was generated from the average of the emotional scores for companies in the industrial group after building an emotional dictionary specific to each industrial group classified in a social network analysis. The study was conducted with various combinations of predictors and confirmed that good predictive and profitable power could be expected when jointly using technical indicators and an emotional variable based on online news by industrial groups.