• Title/Summary/Keyword: 심층신경망 기술

Search Result 148, Processing Time 0.027 seconds

Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology (초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발)

  • Jeong Hun Lee;Bo Ra Kim;Seung Hun Lee;Joon Sik Kim;Min Yoon;Gyeong Rae Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

Predicting Unseen Object Pose with an Adaptive Depth Estimator (적응형 깊이 추정기를 이용한 미지 물체의 자세 예측)

  • Sungho, Song;Incheol, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.12
    • /
    • pp.509-516
    • /
    • 2022
  • Accurate pose prediction of objects in 3D space is an important visual recognition technique widely used in many applications such as scene understanding in both indoor and outdoor environments, robotic object manipulation, autonomous driving, and augmented reality. Most previous works for object pose estimation have the limitation that they require an exact 3D CAD model for each object. Unlike such previous works, this paper proposes a novel neural network model that can predict the poses of unknown objects based on only their RGB color images without the corresponding 3D CAD models. The proposed model can obtain depth maps required for unknown object pose prediction by using an adaptive depth estimator, AdaBins,. In this paper, we evaluate the usefulness and the performance of the proposed model through experiments using benchmark datasets.

A Taekwondo Poomsae Movement Classification Model Learned Under Various Conditions

  • Ju-Yeon Kim;Kyu-Cheol Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.9-16
    • /
    • 2023
  • Technological advancement is being advanced in sports such as electronic protection of taekwondo competition and VAR of soccer. However, a person judges and guides the posture by looking at the posture, so sometimes a judgment dispute occurs at the site of the competition in Taekwondo Poomsae. This study proposes an artificial intelligence model that can more accurately judge and evaluate Taekwondo movements using artificial intelligence. In this study, after pre-processing the photographed and collected data, it is separated into train, test, and validation sets. The separated data is trained by applying each model and conditions, and then compared to present the best-performing model. The models under each condition compared the values of loss, accuracy, learning time, and top-n error, and as a result, the performance of the model trained under the conditions using ResNet50 and Adam was found to be the best. It is expected that the model presented in this study can be utilized in various fields such as education sites and competitions.

Beauty Product Recommendation System using Customer Attributes Information (고객의 특성 정보를 활용한 화장품 추천시스템 개발)

  • Hyojoong Kim;Woosik Shin;Donghoon Shin;Hee-Woong Kim;Hwakyung Kim
    • Information Systems Review
    • /
    • v.23 no.4
    • /
    • pp.69-86
    • /
    • 2021
  • As artificial intelligence technology advances, personalized recommendation systems using big data have attracted huge attention. In the case of beauty products, product preferences are clearly divided depending on customers' skin types and sensitivity along with individual tastes, so it is necessary to provide customized recommendation services based on accumulated customer data. Therefore, by employing deep learning methods, this study proposes a neural network-based recommendation model utilizing both product search history and context information such as gender, skin types and skin worries of customers. The results show that our model with context information outperforms collaborative filtering-based recommender system models using customer search history.

Card Transaction Data-based Deep Tourism Recommendation Study (카드 데이터 기반 심층 관광 추천 연구)

  • Hong, Minsung;Kim, Taekyung;Chung, Namho
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.277-299
    • /
    • 2022
  • The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. Based on the transaction data, developing a smart service system becomes one of major goals in both tourism businesses and knowledge management system developer communities. However, the lack of rating scores, which is the basis of traditional recommendation techniques, makes it hard for system designers to evaluate a learning process. In addition, other auxiliary factors such as temporal, spatial, and demographic information are needed to increase the performance of a recommendation system; but, gathering those are not easy in the card transaction context. In this paper, we introduce CTDDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: i) Temporal preference Embedding (TE) represents tourist groups and services into vectors through Doc2Vec. And ii) Deep tourism Recommendation (DR) integrates the vectors and the auxiliary factors from a tourism RDF (resource description framework) through MLP (multi-layer perceptron) to provide services to tourist groups. In addition, we adopt RFM analysis from the field of knowledge management to generate explicit feedback (i.e., rating scores) used in the DR part. To evaluate CTDDTR, the card transactions data that happened over eight years on Jeju island is used. Experimental results demonstrate that the proposed method is more positive in effectiveness and efficacies.

Fast Detection of Disease in Livestock based on Deep Learning (축사에서 딥러닝을 이용한 질병개체 파악방안)

  • Lee, Woongsup;Kim, Seong Hwan;Ryu, Jongyeol;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1009-1015
    • /
    • 2017
  • Recently, the wide spread of IoT (Internet of Things) based technology enables the accumulation of big biometric data on livestock. The availability of big data allows the application of diverse machine learning based algorithm in the field of agriculture, which significantly enhances the productivity of farms. In this paper, we propose an abnormal livestock detection algorithm based on deep learning, which is the one of the most prominent machine learning algorithm. In our proposed scheme, the livestock are divided into two clusters which are normal and abnormal (disease) whose biometric data has different characteristics. Then a deep neural network is used to classify these two clusters based on the biometric data. By using our proposed scheme, the normal and abnormal livestock can be identified based on big biometric data, even though the detailed stochastic characteristics of biometric data are unknown, which is beneficial to prevent epidemic such as mouth-and-foot disease.

Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks (다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류)

  • Ji Woon, Kim;Sung Min, Park;Seong Wook, Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.

Temporal Relationship Extraction for Natural Language Texts by Using Deep Bidirectional Language Model (양방향 언어 모델을 활용한 자연어 텍스트의 시간 관계정보 추출 기법)

  • Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.81-84
    • /
    • 2019
  • 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. 주어진 문서 내에서 시간 정보를 발견하기 위한 작업으로는 시간적인 표현(time expression) 자체를 인식하거나, 시간 표현과 연관성이 있는 사건(event)을 찾거나, 시간 표현 또는 사건 간에서 발생하는 시간적 연관 관계(temporal relationship)를 추출하는 것이 있다. 문서에 사용된 언어에 따라 고유한 언어적 특성이 다르기 때문에, 만약 시간 정보에 대한 관계성을 고려하지 않는다면 주어진 문장들로부터 모든 시간 정보를 추출해내는 것은 상당히 어려운 일이다. 본 논문에서는, 양방향 구조로 학습된 심층 신경망 기반 언어 모델을 활용하여 한국어 입력문장들로부터 시간 정보를 발견하는 작업 중 하나인 시간 관계정보를 추출하는 기법을 제안한다. 이 기법은 주어진 단일 문장을 개별 단어 토큰들로 분리하여 임베딩 벡터로 변환하며, 각 토큰들의 잠재적 정보를 고려하여 문장 내에 어떤 유형의 시간 관계정보가 존재하는지를 인식하도록 학습시킨다. 또한, 한국어 시간 정보 주석 말뭉치를 활용한 실험을 수행하여 제안 기법의 시간 관계정보 인식 정확도를 확인한다.

  • PDF

Generating Synthetic Raman Spectra of DMMP and 2-CEES by Mathematical Transforms and Deep Generative Models (수학적 변환과 심층 생성 모델을 활용한 DMMP와 2-CEES의 모의 라만 분광 생성)

  • Sungwon Park;Boseong Jeong;Hongjoong Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.422-430
    • /
    • 2023
  • To build an automated system detecting toxic chemicals from Raman spectra, we have to obtain sufficient data of toxic chemicals. However, it usually costs high to gather Raman spectra of toxic chemicals in diverse situations. Tackling this problem, we develop methods to generate synthetic Raman spectra of DMMP and 2-CEES without actual experiments. First, we propose certain mathematical transforms to augment few original Raman spectra. Then, we train deep generative models to generate more realistic and diverse data. Analyzing synthetic Raman spectra of toxic chemicals generated by our methods through visualization, we qualitatively verify that the data are sufficiently similar to original data and diverse. For conclusion, we obtain a synthetic dataset of DMMP and 2-CEES with the proposed algorithm.