• Title/Summary/Keyword: 심성암류

Search Result 26, Processing Time 0.025 seconds

Zircon Morphology and Petrochemistry of Mesozoic Plutonic rocks in Seonsan Area, Korea (선산 지역 중생대 심성암류의 저어콘 헝태 및 암석화학)

  • 이윤종;박순자;장용성;정원우;김중욱;황상구;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.81-102
    • /
    • 2004
  • The plutonic rocks in Seonsan area are divided into dioritic-syenitic rock, gneissose granite, biotite granite and fine grained biotite granite. These rocks intruded into the Pre-cambrian metamorphic complex and are all covered by the Cretaceous Nakdong formation. According to modal minerals, dioritic-syenitic rock corresponds to quartz monzonite, granodiorite, tonalite fields, whereas all the other plutonic rocks fall in granite field. Petrochemically the dioritic-syenitic rock is lower in SiO$_2$ content, differentiation index and Larsen index than all the other plutonic rocks. About the zircon morphology, dioritic-syenitic rock shows (100) dominant type but other granitic rocks exhibit mixed types between (100) and (110) type. The dioritic-syenitic rock could be crystallized in higher temperature than the other plutonic rocks. The plutonic rocks correspond to calc-alkaline rock series, and belong to I-type granite and mostly magnetite-series in magmatic origin. In plutonic processes, the dioritic-syenitic rock with 5kb vapor pressure could intrude into the metamorphic batement at 17km deep below the surface. Later the gneissose granite with lower 3kb vapor pressure could intrude at 10km deep. Sequentially the biotite granite with 0.7kb could intrude at 2km deep. Finally the fine grained biotite granite with 3kb vapor pressure could intrude at 10km deep.

Petrological Study on the Intermediate-basic Plutonic Rocks in the Southwestern Part of the Korean Peninsula (한반도 서남부에 분포하는 중성-염기성 심성암류에 대한 암석학적 연구)

  • Kim, Yong-Jun;Park, Jae-Bong;Park, Byung-Kyu
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.528-538
    • /
    • 2006
  • Main aspect of this study is to clarify the petrochemistry and petrogenesis of intermediated-basic plutons located in the southwestern part of the Korean peninsula. These Intermediated-basic plutons consist of Pre-Cambrian anorthosite-gabbro, Triassic hornblende gabbro (Jirisan area), Jurassic diorite-syente (Jirisan and north area) and Cretaceous gabbro-diorite (south area). The Massif type anorthosite has multi intrusions, where each one intruded by gabbroic rocks, composed of gabbro, norite, troctolite and leucogabbro. In the variation diagram of the major-minor composition, AMF and Pl-Px-Ol diagrams, we suggest that intermediated-basic plutons in the southwestern part of the Korea show a trend consistent to Daly's value and calc-alkaline rock series. Accoding to REE (La/Yb)cw and Eu/Sm, these plutons are enriched with LREE than HREE, and emplaced by the tectonic setting in continent and/or continental margin.

Petrology of the Cretaceous igneous rocks in Gadeog Island, Busan, Korea (부산 가덕도 지역 백악기 화성암류에 대한 암석학적 연구)

  • 고정선;김은희;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-63
    • /
    • 2004
  • This study focuses on the petrography and petrochemical characteristics of the volcanic and plutonic rocks in Gadeog island, Busan, Korea. Based on textural and mineralogical characteristics, intermediate volcanic rocks can be divided into andesitic lava flows (porphyritic and massive andesites) and andesitic pyroclastics. Felsic volcanic rocks are composed of rhyolite, rhyolitic welded tuff, and tuff breccia. Plutonic rocks are intruded rhyolite and andesitic rocks, and composed of hornblende granodiorite which contains lots of mafic magma enclaves. Volcanic rocks are composed of andesite, dacite and rhyolite having a range in SiO$_2$ from 59 to 78wt.%. The volcanic rocks belong to the calc-alkaline rock series. Plutonic rocks have a range in SiO$_2$ from 63 to 69wt.%. This compositional variations correspond to those of Cretaceous volcanic and plutonic rocks in the southeastern Gyeongsang basin. The trace element composition and rare earth element patterns of the volcanics, which are characterized by high LREE/HFSE ratios and enrichment in LREE, suggest that they are typical of calc-alkaline volcanic rocks produced in the subduction environment around continental arc. We concluded that volcanic and plutonic rocks in Gadeog Island were evolved from orogenic andesitic magma which was produced by partial melting of the mantle wedge in the subduction environment.

Petrology of the Cretaceous Igneous Rocks in the Mt. Baegyang Area, Busan (부산 백양산 지역의 백악기 화산-심성암류에 대한 암석학적 연구)

  • 김향수;고정선;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.32-52
    • /
    • 2003
  • The Mt. Baegyang in Busan, composed of sedimentary basement rocks (Icheonri Formation), andesite (lava), andesitic pyroclastic rocks, fallout tuff and tuffaceous sedimentary rocks, rhyolitic pyroclastic rocks, intrusive rocks (granite-porphyry, felsite, and biotite-granite) of Cretaceous age in ascending order. The volcanic rocks show a section of composite volcano which comprised alternation of andesitic lava and pyroclasitc rocks, rhyolitic pyrocalstic rocks (tuff breccia, lapilli tuff, fine tuff) from the lower to the upper strata. From the major element chemical analysis, the volcanic and intrusive rocks belong to calc-alkaline rock series. The trace element composition and REE patterns of volcanic and plutonic rocks, which are characterized by a high LILE/HFSE ratio and enrichments in LREE, suggest that they are typical of continental margin arc calc-alkaline rocks produced in the subduction environment. Primary basaltic magma might have been derived from partial melting of mantle wedge in the upper mantle under destructive plate margin. Crystallization differentiation of the basaltic magma would have produced the calc-alkaline andesitic magma. And the felsic rhyolitic magma seems to have been evolved from andesitic magma with crystallization differentiation of plagioclase, pyroxene, and hornblende.

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: II. Mineralogy and Geochemistry (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: II. 광물 및 지구화학)

  • Kim In-Joon;Lee Gyoo Ho;Cho Deung-Lyong;Lee Seung-Ryeol;Lee Sa-Ro
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.459-475
    • /
    • 2004
  • The geology of the Kualakulun area in Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Sepauk Plutonic rocks are classified as the calc-alkaline series and the S-type granite. Sintang Intrusive rocks are basic-intermediate and intermediate rocks, and consists of basalt, basaltic andesite, basaltic trachyandesite and trachyandesite. The Malasan Volcanics are characterized by intermediate dacitic pyroclasticl and minor lavas and belong to the subalkaline (calc-alkaline and tholeiitic) series. The whole-rock K-Ar ages of the fine-grained biotite granites and medium-grained granitoids were determined to be 100.5-106.5 Ma and 91.9-102.6 Ma, respectively. The whole-rock K-Ar age of the diorite is 89.1 Ma. K-Ar ages of the Malasan Volcanics and Shintang intrusives show 31.5-36.8 Ma and 24.6-34.5 Ma, respectively, and correspond to the Tertiary time.