• Title/Summary/Keyword: 심부탐사

Search Result 143, Processing Time 0.026 seconds

Assessing the repeatability of reflection seismic data in the presence of complex near-surface conditions CO2CRC Otway Project, Victoria, Australia (복잡한 천부구조하에서 반사법 탄성파자료의 반복성에 대한 평가, 호주, 빅토리아, CO2CRC Otway 프로젝트)

  • Al-Jabri, Yousuf;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • This study utilises repeated numerical tests to understand the effects of variable near-surface conditions on time-lapse seismic surveys. The numerical tests were aimed at reproducing the significant scattering observed in field experiments conducted at the Naylor site in the Otway Basin for the purpose of $CO_2$ sequestration. In particular, the variation of elastic properties of both the top soil and the deeper rugose clay/limestone interface as a function of varying water saturation were investigated. Such tests simulate the measurements conducted in dry and wet seasons and to evaluate the contribution of these seasonal variations to seismic measurements in terms of non-repeatability. Full elastic pre-stack modelling experiments were carried out to quantify these effects and evaluate their individual contributions. The results show that the relatively simple scattering effects of the corrugated near-surface clay/limestone interface can have a profound effect on time-lapse surveys. The experiments also show that the changes in top soil saturation could potentially affect seismic signature even more than the corrugated deeper surface. Overall agreement between numerically predicted and in situ measured normalised root-mean-square (NRMS) differences between repeated (time-lapse) 2D seismic surveys warrant further investigation. Future field studies will include in situ measurements of the elastic properties of the weathered zone through the use of 'micro Vertical Seismic Profiling (VSP)' arrays and very dense refraction surveys. The results of this work may impact on other areas not associated with $CO_2$ sequestration, such as imaging oil production over areas where producing fields suffer from a karstic topography, such as in the Middle East and Australia.

Non-Destructive Precise Electromagnetic Surveying for the Deep Underground Utilities (고심도 지중매설물의 지하측랑을 위한 비파괴 정밀 전자측량)

  • 손호웅;이강원;김형수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.109-121
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechlical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

Delineation of water seepage in earth-fill embankments by electrical resistivity method (전기비저항탐사에 의한 제당의 누수구간 탐지)

  • 정승환;김정호;양재만;한규언;김영웅
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • Geophysical methods applied to water seepage problem in earth-fill embankment attempt to detect and map the estimate of size and depth of the seepage path. Seepage zones generally produce lOW resistivity anomalies due to high saturation of water. Dipole-dipole resistivity surveying technique, which is actually a combined sounding-profiling procedure, was used to delineate the seepage path through this study. In this study, the finite difference methods to solve the electric potential distribution in 2 112 dimension, was adopted as the numerical scheme for the forward problem. Second order Marquart's method, one the iterative damped least square methods, was selected for the automatic inversion. The computer program was implemented in FORTRAN 77 for 1 6-bit personal computer. In this paper, we present a case history which illustrates the application of dipole-dipole resistivity method to the delineation of water flow in earth-fill structures. Also the automatic two-dimensional resistivity inversion was applied to a field data where the interpretive advantages of the program become evident.

  • PDF

Analysis of Regional Potential Mapping Factors of Metal Deposits using Machine Learning (머신러닝을 이용한 광역 금속 광상 배태 잠재성 평가 인자 분석)

  • Park, Gyesoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The genesis of ore bodies is a very diverse and complex process, and the target depth of mineral exploration increases. These create a need for predictive mineral exploration, which may be facilitated by the advancement of machine learning and geological database. In this study, we confirm that the faults and igneous rocks distributions and magnetic data can be used as input data for potential mapping using deep neural networks. When the input data are constructed with faults, igneous rocks, and magnetic data, we can build a potential mapping model of the metal deposit that has a predictive accuracy greater than 0.9. If detailed geological and geophysical data are obtained, this approach can be applied to the potential mapping on a mine scale. In addition, we confirm that the magnetic data, which provide the distribution of the underground igneous rock, can supplement the limited information from the surface igneous rock distribution. Therefore, rather than simply integrating various data sets, it will be more important to integrate information considering the geological correlation to genesis of minerals.

Polarization characteristics of magnetotelluric fields in the Korean peninsula (한반도에서 관측된 MT(Magnetotelluric)장의 분극 특성)

  • Lee, Choon-Ki;Kwon, Byung-Doo;Lee, Heui-Soon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.35-38
    • /
    • 2006
  • The polarized direction of MT field was analyzed using the MT dataset measured in the Korean Peninsula. The atmospherics above 1 Hz has a large dispersion of polarized direction, whereas the Schumann resonance near 8 Hz exhibits the predominant direction ranging from $N20^{\circ}W$ to NS. The electromagnetic field variations below 0.1 Hz, induced by magnetic pulsations, show a strongly polarized direction of nearly NS. It results from the regular pulsations since the regular pulsation fields, driven by Alfv.n's wave in the magnetosphere, has a worldwide predominant direction of NS. The MT field strongly polarized along NS direction causes the poorly behaved XY impedance.

  • PDF

MT surveys near Century Zinc Mine, NW Queensland, Australia (호주 Century 아연 광산에서의 MT 탐사)

  • Lee, Tae-Jong;Lee, Seong-Kon;Song, Yoon-Ho;Cull, James
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.345-352
    • /
    • 2007
  • Two-dimensional (2D) MT surveys near the Century mine in Australia have been performed with very far remote reference in Esashi, Japan (RR_ESS) as well as Gregory Downs (RR_GREG), which are roughly 6,400 km and 80 km apart from the survey area, respectively. Good quality of MT data could be obtained by remote reference processing with RR_GREG, while the coherency of magnetic fields between field sites and RR_ESS was not sufficient to be used as remote data. Both 2D and 3D inversion of 2D profile data represented the general geological structure beneath the survey area. The main target of the survey, Termite Range Fault, appeared as a boundary between a conductive block to the north and a resistive block to the south in the reconstructed resistivity section, and is inclined slightly to the north-east direction.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

공주 능치지역 천부 지하구조에 대한 지구물리학적 연구

  • Kim, Gi-Hyeon;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • Geophysical survey was carried out to derive some information on the existence of near-surface anomalous body at Reung-Chi area in Kongju. Resistivity, seismic, magnetic and gravity method were applied. Geophysical survey that was applied was the electrical resistivity survey, seismic survey, magnetic survey, gravity survey. These surveys are analyzed to provide data of high resolution. As a result of analysis of resistivity survey, anomalies showing high resistivity anomaly than around appeared, and the one showing M-shape out of those explains the possibility that underground common or other underground structure or geographical anomalous zone could exist in the underground. As a result of analysis of seismic survey, it is clear that the low velocity layer is spread as far as the bottom of the underground. It is possible to presume that it is a phenomenon appearing while going through the underground space where it is lying in the underground. Area that shows unusual situation in interpretation of data on seismic waves are included into the area that once showed resistivity anomaly, the results of both seismic surveys come in accord. As a result of magnetic survey, a circle-shape of twin magnetic fields in the area where abnormalities are shown between electrical resistivity survey and seismic survey is appeared. Given the area of gravity survey, abnormalities whose density is different from the one around the bottom of the underground. As a result of analogizing the data of underground of the subsurface based on analysis of data from each survey, it was interpreted that anomalous zone exists commonly in the research areas.

  • PDF

A Study on the Resistivity Structure in Central Myanmar Basin using DC Resistivity and Magnetotellurics (전기비저항 탐사와 자기지전류 탐사 자료를 이용한 미얀마 중앙분지 전기비저항 구조 연구)

  • Noh, Myounggun;Lee, Heuisoon;Ahn, Taegyu;Jang, Seonghyung;Hwang, InGul;Lee, Donghoon;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.62-71
    • /
    • 2019
  • We conducted DC resistivity and MT survey to obtain the resistivity structure of the central Myanmar basin. We tried to analyze the underground structure through the resistivity variation of Myanmar by performing representative geophysical survey methods because researches on the electrical resistivity structure are insufficient in Myanmar. The electrical resistivity is expected to be low considering the marine sedimentary rocks composed of shale and sandstone in this area. The DC resistivity and MT survey were carried out using SmartRho of Geolux Co., Ltd. and MTU-5A of Phoenix geophysics Ltd., respectively, to visualize the electrical resistivity structure of study area. DC resistivity and MT survey showed an electrical resistivity less than dozens of ohm-m within the depth of 100 m. In particular, MT survey data were almost similar to TM and TE modes in the frequency range above 1 Hz. The two-dimensional inversion of MT data showed a subsurface structure with low resistivity below 150 ohm-m divided into east-west direction. We confirmed that the inversions of DC resisitivity and MT data along an overlapped survey line represented similar results. In the future, considering the high electrical conductivity, it would be effective to perform DC resistivity and MT survey simultaneously to study the electrical resistivity structure of the central Myanmar basin.