• Title/Summary/Keyword: 심볼릭 객체

Search Result 3, Processing Time 0.018 seconds

Hierarchical Clustering of Symbolic Objects based on Asymmetric Proximity (비대칭적 유사도 기반의 심볼릭 객체의 계층적 클러스터링)

  • Oh, Seung-Joon;Park, Chan-Woong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.729-734
    • /
    • 2012
  • Clustering analysis has been widely used in numerous applications like pattern recognition, data analysis, intrusion detection, image processing, bioinformatics and so on. Much of previous work has been based on the numeric data only. However, symbolic data analysis has emerged to deal with variables that can have intervals, histograms, and even functions as values. In this paper, we propose a non symmetric proximity based clustering approach for symbolic objects. A method for clustering symbolic patterns based on the average similarity value(ASV) is explored. The results of the proposed clustering method differ from those of the existing methods and the results are very encouraging.

Design Neural Machine Translation Model Combining External Symbolic Knowledge (심볼릭 지식 정보를 결합한 뉴럴기계번역 모델 설계)

  • Eo, Sugyeong;Park, Chanjun;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.529-534
    • /
    • 2020
  • 인공신경망 기반 기계번역(Neural Machine Translation, NMT)이란 딥러닝(Deep learning)을 이용하여 출발 언어의 문장을 도착 언어 문장으로 번역해주는 시스템을 일컫는다. NMT는 종단간 학습(end-to-end learning)을 이용하여 기존 기계번역 방법론의 성능을 앞지르며 기계번역의 주요 방법론으로 자리잡게 됐다. 이러한 발전에도 불구하고 여전히 개체(entity), 또는 전문 용어(terminological expressions)의 번역은 미해결 과제로 남아있다. 개체나 전문 용어는 대부분 명사로 구성되는데 문장 내 명사는 주체, 객체 등의 역할을 하는 중요한 요소이므로 이들의 정확한 번역이 문장 전체의 번역 성능 향상으로 이어질 수 있다. 따라서 본 논문에서는 지식그래프(Knowledge Graph)를 이용하여 심볼릭 지식을 NMT와 결합한 뉴럴심볼릭 방법론을 제안한다. 또한 지식그래프를 활용하여 NMT의 성능을 높인 선행 연구 방법론을 한영 기계번역에 이용할 수 있도록 구조를 설계한다.

  • PDF

Efficient Image Retrieval using Minimal Spatial Relationships (최소 공간관계를 이용한 효율적인 이미지 검색)

  • Lee, Soo-Cheol;Hwang, Een-Jun;Byeon, Kwang-Jun
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.383-393
    • /
    • 2005
  • Retrieval of images from image databases by spatial relationship can be effectively performed through visual interface systems. In these systems, the representation of image with 2D strings, which are derived from symbolic projections, provides an efficient and natural way to construct image index and is also an ideal representation for the visual query. With this approach, retrieval is reduced to matching two symbolic strings. However, using 2D-string representations, spatial relationships between the objects in the image might not be exactly specified. Ambiguities arise for the retrieval of images of 3D scenes. In order to remove ambiguous description of object spatial relationships, in this paper, images are referred by considering spatial relationships using the spatial location algebra for the 3D image scene. Also, we remove the repetitive spatial relationships using the several reduction rules. A reduction mechanism using these rules can be used in query processing systems that retrieve images by content. This could give better precision and flexibility in image retrieval.