• 제목/요약/키워드: 실험실 연구

검색결과 1,772건 처리시간 0.021초

자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구 (Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields)

  • 최강원;조영길;최만식;이복자;현정호;강정원;정회수
    • 한국해양학회지:바다
    • /
    • 제5권3호
    • /
    • pp.195-207
    • /
    • 2000
  • 우리나라 갯벌과 농지내 유 ${\cdot}$ 무기 원소의 거동을 이해하기 위해 제한된 환경의 실험실 수조에서 예비실험을 수행하였다. 총 6개의 아크릴 투명 수조에 갯벌 퇴적물 3종 SW1&2(anoxic, silty mud), SW3&4(anoxic, mud), SW5&6(suboxic, mud)과 농지 토양 3종 FW1&2(벼 포기 포함), FW3&4(벼 포기 제외), FW5&6(간척 농지,펴 포기 제외)을 채운 후 오염물질(구리, 비소, 카드뮴, 크롬, 납, 수은, Glucose+Glutamic acid)이 주입된 해수와 담수를 각각 SW 및 FW수조에 넣고, 2주일에 걸쳐 상층수 및 표층 퇴적물/토양을 채취 ${\cdot}$ 분석하였다. 분석 결과 FW와 SW상층수 중 질산염 이온의 농도는 각각 700${\sim}$800 ${\mu}$M, 2${\sim}$5 ${\mu}$M로 FW에서 현저히 높았고, 인산염 이온의 농도는 각각 3${\sim}$4 ${\mu}$M, 1${\sim}$2 ${\mu}$M(SW1 제외)로 FW에서 약간 높았다. 특이하게 SW1에서 인산염 이온은 시간이 지남에 따라 수 십 ${\mu}$M에 이르는 높은 농도로 증가하였다. 한편, 표층 퇴적물/토양 중 박테리아 세포 수는 FW1&3에서 평균 2.5${\times}$10$^9$cells/g dry sediment으로 SW의 평균 3.0${\times}$10$^8$cells/g dry sediment 보다 약 10배가 높았다. FW5 토양 중 박테리아 세포 수(3.5${\times}$10$^8$cells/g dry sediment)는 SW 퇴적물 중 숫자와 유사하였다. SW 퇴적물 중 MUF-Phosphate 활성도는 100-200 nM/ml/hr이지만 FW5&6을 제외한 FW 토양에서는 약 2,000 nM/ml/hr로 현저히 크게 나타났다. ${\beta}$-D-Cellobiose, ${\alpha}$-D-Glucose, 그리고 ${\beta}$-D-Glucos의 활성도 또한 FW 퇴적물에서 큰 값을 보였다. 그러나 FW5&6 토양 중 효소활성도는 SW 퇴적물에서의 값과 유사했다. 수조 상층수 중 Cu, Cd, As 농도는 모든 FW, SW수조에서 시간이 지남에 따라 일관성 있게 감소하였고, 제거속도는 Cu가 다른 원소에 비해 빨랐다. 제거속도는 FW 3개 수조 중 FW5&6에서 세 원소 모두 가장 느렸고, SW 3개 수조 중에서는 SW1&2에서 가장 빨랐다. SW와 FW간 제거속도 차이는 세 원소 모두 명확치 않았다 Cr은 FW에서 전반적으로 감소하는 경향을 보였지만 SW에서는 실험 초기에 감소하다 24시간 이후에는 증가 후 일정한 양상을 보였다. Pb은 FW에서 전반적으로 감소했지만 SW에서는 초기에 급격히 증가 후 다시 급격히 감소하는 양상을 보였다 Pb 또한 Cu, Cd, As와 마찬가지로 SW1&2에서 제거속도가 가장 빠르게 나타났다. FW 상층수 중 Hg는 시간에 따라 급격히 감소했고, 제거속도는 Fw5&6에서 가장 느렸다. 이러한 결과에 근거할 때 벼가 자라고 있고 이분해성 유기물이 풍부한 FW1&2, FW3&4 토양과 상층수에서는 유기물의 분해 활동이 활발하였지만, 벼가 경작되지 않는 FW5&6과 SW 에서는 유기물이 상대적으로 결핍되어 유기물의 분해활동이 적었을 것으로 판단된다. 한편, 수조에 인위적으로 유기물을 첨가한 경우 박테리아 세포수는 SW1에서 164시간 동안 4배 증가하였으나 SW3과 SW5에서는 각각 2.7배, 1.5배 그리고 FW1&3&5의 경우 각각 약 2배, 1.7배, 0.6배 정도만 증가하였다. Cu, Cd, As등 친 유기성 원소들의 시간에 따른 농도 감소 그리고 이들 원소(Hg 포함) 농도 감소 속도가 유기물이 적은 FW5&6에서 상대적으로 느리게 나타난 결과 등은 이들 금속들이 부유 입자 표면의 유기물과 결합 ${\cdot}$ 침적되어 퇴적물로 제거되었기 때문에 나타난 결과로 생각된다. 한편, SW1&2에서 이들 원소의 제거 속도가 빨랐고 인산염 이온의 농도가크게 증가했던 원인은 SW3&4에 비해 상대적으로 공극이 큰 퇴적물로 채워진 SW1&2 퇴적물의 공극수 중 황화수소, 인산염 이온 등이 퇴적물 상층수로 쉽게 확산 ${\cdot}$ 공급되었고, 그 결과 Cu, Cd, As 등 금속 이온이 황화수소 이온과 결합 ${\cdot}$ 제거된 까닭으로 생각된다. 종합적으로 수조 상층수중 유 ${\cdot}$ 무기 원소의 거동은 주로 입자 표면의 유기물과 퇴적물/토양에서 공급된 황화물에 의해 조절된 것으로 생각된다.

  • PDF

병원 방사선 작업 종사자의 방사선 피폭 분석 현황 (The Analysis of Radiation Exposure of Hospital Radiation Workers)

  • 정태식;신병철;문창우;조영덕;이용환;염하용
    • Radiation Oncology Journal
    • /
    • 제18권2호
    • /
    • pp.157-166
    • /
    • 2000
  • 목적 : 병원 방사선 작업 종사자들의 개인별 방사선 피폭 정도를 분석하여 방사선 장해의 위험도를 예상해 보고 방사선 작업 종사자들의 점차적인 수적 증가와 장기근무화 되고 있는 것을 고려하여 종사자들의 건강관리에 만전을 기하고 병원 방사선 피폭을 최소화하며 방사선 피폭의 위험에 대해 경각심을 고취시키고자 본 연구를 실시하였다. 대상 및 방법 : 1993년 1월 1일부터 1997년 12월 31일까지 부산광역시 소재 4개 대학병원에서 기록 보관중인 방사선 피폭 관리 대장을 가지고 분석하였으며, 1년 미만 기록된 자를 제외한 347명에 대하여 필름뱃지나 열형광 선량계(TLD:Thermolumlnescent dosimeter)로 정기적으로 측정하여 보관한 기록지를 가지고 분석하였다. 진단방사선과, 치료방사선과 및 핵의학과에 근무하는 의사, 방사선사, 간호사, 사무요원들이 있으며 실험실이나 다른 부서도 모두 포함하였고 비교대상군간의 피폭량은 연평균 피폭량으로 하였다. 과다 피폭의 빈도의 비를 보기 위해서는 3개월간의 피폭을 한 건으로 하여 전체에 대한 100분율($\%$)로 비교하였다 분석방법으로는 먼저 연도별, 기관별, 과별로 분석해보고 다음으로 각과 내에서 각 파트별로 세부분석을 하였다. 피폭정도의 기준은 3개월간의 누적량을 가지고 분석하였으며, 각 개인의 연령, 직종별(의사, 방사선사, 간호사, 기타)로 분석하였다. 연령에 따른 분석에서 개인의 나이는 1993년과 1997년의 중간인 1995년을 기준으로 하였다. 과다 피폭의 대상에 대해서는 과다 피폭의 원인을 분석해 보고 개선방법을 연구해 보았다. 통계처리로는 SPSS 프로그램에서 $\chi$$^{2}$_test와 ANOVA- test를 이용하여 p-Value로 유의성을 검정하였다. 결과 : 전체 대상자 347명에 대한 연간 피폭선량 평균은 1.52$\pm$1.35 mSv 였으며 법적 선량한도인 50mSv보다 훨씬 적은 량이지만 그 중 125명(36$\%$)은 방사선과 관련 없는 일반인의 방사선 피폭의 선량한도인 1년간 1 mSv 보다 많은 양의 피폭을 받고 있었다 연령에 따른 방사선 피폭은 30세이하에서 평균 1.87$\pm$1.01 mSV, 31세에서 40세 사이가 평균 1.22$\pm$0.69 mSV, 41세 이상에서 평균 0.97$\pm$0.43 mSV로 연령이 적을수록 많은 양의 피폭을 받고 있었다(p<0.01). 병원 내에서 방사선 피폭을 많이 받는 장소가 한정되어 있었다. 방사선을 취급하는 과별로 받는 년간 평균 피폭 선량은 진단방사선과 1.65$\pm$1.54mSv, 치료방사선과 1.17$\pm$0.82 mSv, 핵의학과 1.79$\pm$1.42 mSv, 기타 0.99$\pm$0.51 mSv였으며 상대적으로 저선량율 에너지를 사용하는 핵의학과에서 다른 과와 비교해서 방사선 피폭이 높게 나타났으며(p<0.05), 핵의학과 내에서는 특히 동위원소 조작실과 주입실의 년간 평균 피폭량이 3.69$\pm$1.81 mSv으로 많은 피폭을 받고 있었다(p<0.01). 진단방사선과 내에서는 대장 촬영실 근무자의 연평균 피폭량이 3.74$\pm$1.74 mSv로 가장 많이받고 있으며(p<0.01) 그외 투시진단법(Fluoroscopy) 등 직접 투시를 요하는 촬영실, 즉 혈관촬영실이 연평균 1.17$\pm$0.35 mSv, 상위장관 촬영실이 연평균 1.75$\pm$1.34 mSv으로 평균보다 높게 나타났다(p<0.01). 치료방사선과에서는 가장 많이 고에너지의 방사선을 사용하지만 상대적으로 피폭을 적게 받고 있었다. 직종별 연평균 피폭선량은 의사 1.75$\pm$1.17 mSv, 방사선사 1.60$\pm$1.39 mSV, 간호사 0.93$\pm$0.35 mSV, 기타 1.00$\pm$0.3 mSv로 의사와 방사선사가 다른 직종에 비해 높게 나타났다(p<0.05) 결론 : 결론으로 방사선 작업 종사자의 수적 증가와 장기 근무화 현상을 고려할 때 작은 양이나마 방사선 피폭을 동일인이 동일 장소에서 계속 받게 되면 방사선 피폭의 축적 선량은 증가할 수도 있을 것이다. 그러므로 작업종사자에 대한 교육을 더욱 강화할 필요가 있으며 피치 못하게 근무중 방사선 피폭을 받아야 되는 부서에는 순환근무를 실시하여 근무시간을 단축하고 취급에 숙련된 자가 근무하게 하여 개인별 피폭누적 선량을 최소화하여 종사자의 건강을 유지증진 시켜야 할 것이다

  • PDF