• Title/Summary/Keyword: 실제효율

Search Result 6,559, Processing Time 0.042 seconds

Comparison of In Vitro, Ex Vivo, and In Vivo Antibacterial Activity Test Methods for Hand Hygiene Products (손 위생 제품에 대한 in vitro, ex vivo, in vivo 항균 시험법 비교)

  • Daeun Lee;Hyeonju Yeo;Haeyoon Jeong
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • Numerous methods have been applied to assess the antibacterial effectiveness of hand hygiene products. However, the different results obtained through various evaluation methods have complicated our understanding of the real efficacy of the products. Few studies have compared test methods for assessing the efficacy of hand hygiene products. In particular, reports on ex vivo pig skin testing are limited. This study aimed to compare and characterize the methodologies applied for evaluating hand hygiene products, involving in vitro, ex vivo, and in vivo approaches, applicable to both leave-on sanitizers and wash-off products. Our further aim was to enhance the reliability of ex vivo test protocols by identifying influential factors. We performed an in vitro method (EN1276) and an in vivo test (EN1499 and ASTM2755) with at least 20 participants, against Serratia marcescens or Escherichia coli and Staphylococcus aureus. For the ex vivo experiment, we used pig skin squares prepared in the same way as those used in the in vivo test method and determined the optimal treated sample volumes for sanitizers and the amount of water required to wash off the product. The hand sanitizers showed at least a 5-log reduction in bacterial load in the in vitro test, while they showed little antibacterial activity in the in vivo and ex vivo tests, particularly those with a low alcohol content. For the hand wash products, the in vitro test was limited because of bubble formation or the high viscosity of the products and it showed low antibacterial activity of less than a 1-log reduction against E. coli. In contrast, significantly higher log reductions were observed in ex vivo and in vivo tests, consistently demonstrating these results across the two methods. Our findings revealed that the ex vivo and in vivo tests reflect the two different antibacterial mechanisms of leave-on and wash-off products. Our proposed optimized ex vivo test was more rapid and more precise than the in vitro test to evaluate antibacterial results.

A Study on the Digital Drawing of Archaeological Relics Using Open-Source Software (오픈소스 소프트웨어를 활용한 고고 유물의 디지털 실측 연구)

  • LEE Hosun;AHN Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.1
    • /
    • pp.82-108
    • /
    • 2024
  • With the transition of archaeological recording method's transition from analog to digital, the 3D scanning technology has been actively adopted within the field. Research on the digital archaeological digital data gathered from 3D scanning and photogrammetry is continuously being conducted. However, due to cost and manpower issues, most buried cultural heritage organizations are hesitating to adopt such digital technology. This paper aims to present a digital recording method of relics utilizing open-source software and photogrammetry technology, which is believed to be the most efficient method among 3D scanning methods. The digital recording process of relics consists of three stages: acquiring a 3D model, creating a joining map with the edited 3D model, and creating an digital drawing. In order to enhance the accessibility, this method only utilizes open-source software throughout the entire process. The results of this study confirms that in terms of quantitative evaluation, the deviation of numerical measurement between the actual artifact and the 3D model was minimal. In addition, the results of quantitative quality analysis from the open-source software and the commercial software showed high similarity. However, the data processing time was overwhelmingly fast for commercial software, which is believed to be a result of high computational speed from the improved algorithm. In qualitative evaluation, some differences in mesh and texture quality occurred. In the 3D model generated by opensource software, following problems occurred: noise on the mesh surface, harsh surface of the mesh, and difficulty in confirming the production marks of relics and the expression of patterns. However, some of the open source software did generate the quality comparable to that of commercial software in quantitative and qualitative evaluations. Open-source software for editing 3D models was able to not only post-process, match, and merge the 3D model, but also scale adjustment, join surface production, and render image necessary for the actual measurement of relics. The final completed drawing was tracked by the CAD program, which is also an open-source software. In archaeological research, photogrammetry is very applicable to various processes, including excavation, writing reports, and research on numerical data from 3D models. With the breakthrough development of computer vision, the types of open-source software have been diversified and the performance has significantly improved. With the high accessibility to such digital technology, the acquisition of 3D model data in archaeology will be used as basic data for preservation and active research of cultural heritage.

Analysis of Waterbody Changes in Small and Medium-Sized Reservoirs Using Optical Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 광학 위성영상을 이용한 중소규모 저수지 수체 변화 분석)

  • Younghyun Cho;Joonwoo Noh
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.363-375
    • /
    • 2024
  • Waterbody change detection using satellite images has recently been carried out in various regions in South Korea, utilizing multiple types of sensors. This study utilizes optical satellite images from Landsat and Sentinel-2 based on Google Earth Engine (GEE) to analyze long-term surface water area changes in four monitored small and medium-sized water supply dams and agricultural reservoirs in South Korea. The analysis covers 19 years for the water supply dams and 27 years for the agricultural reservoirs. By employing image analysis methods such as normalized difference water index, Canny Edge Detection, and Otsu'sthresholding for waterbody detection, the study reliably extracted water surface areas, allowing for clear annual changes in waterbodies to be observed. When comparing the time series data of surface water areas derived from satellite images to actual measured water levels, a high correlation coefficient above 0.8 was found for the water supply dams. However, the agricultural reservoirs showed a lower correlation, between 0.5 and 0.7, attributed to the characteristics of agricultural reservoir management and the inadequacy of comparative data rather than the satellite image analysis itself. The analysis also revealed several inconsistencies in the results for smaller reservoirs, indicating the need for further studies on these reservoirs. The changes in surface water area, calculated using GEE, provide valuable spatial information on waterbody changes across the entire watershed, which cannot be identified solely by measuring water levels. This highlights the usefulness of efficiently processing extensive long-term satellite imagery data. Based on these findings, it is expected that future research could apply this method to a larger number of dam reservoirs with varying sizes,shapes, and monitoring statuses, potentially yielding additional insights into different reservoir groups.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

The Effects of Consumer Value Cognition on Benefits and Attributes of Culture-Art Products (문화예술상품 소비자의 가치인식이 추구혜택과 상품속성에 미치는 영향)

  • Shin, Eun Joo;Rhee, Young Sun
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.177-207
    • /
    • 2012
  • Today's consumers perceive consumption as a representation of themselves. It is not simply an act that fulfills a consumer's physical and practical needs. Even in terms of life quality, consumers increasingly want to achieve an emotional and sensible experience through consumption. Consumers now make decisions based on their need to express their position in relation to other people, pursue emotional satisfaction, and try to improve the quality of life. Culture-art products that meet such internal and external demands of consumers have made significant improvements in both quantity and quality, because of the social interest and policy support. The recognition of personal and social values of culture and arts has brought about interest in and need for culture-art products. Businesses have agilely embraced such change and actively implemented various marketing strategies utilizing culture and arts. For example, businesses began to sponsor artists who produce culture-art products while building facilities for cultural and art performances or exhibitions. Businesses have also provided performances and exhibitions free-of-charge or at affordable prices. As a result, the supply in the market has started to exceed its demand as is often the case in many of other markets. However, such imbalance has occurred not because of over-supply but because of a lack of demand. Given these circumstances, the government and culture and art related organizations, which had mainly concentrated on the supply side, started to recognize the importance of creating personal and social values in culture and arts. As a result, the government and various organizations are now creating various strategies that include policy measures to achieve their new found goal. Unfortunately however, such efforts are not meeting the expectations. Focusing on above-mentioned circumstances and problems, this study aims to find measures to create demand for culture-art products in the internal conditions of those who consume culture-art products. In other words, given that the demand for culture-art products has not increased despite all external conditions to encourage consumption, this study aims to find the reasons in consumers' value judgment on culture-art products. Though there were recent studies on culture-art products that applied consumer behavior on marketing theories, most of them focused on peripheral aspects such as people's motivation for or satisfaction from watching culture-art events. Hence, there is a need to understand what kind of value consumers perceive from culture-art products and how such value cognition leads to consumption in a comprehensive manner. This study acts as follow-up to a separate study entitled "Qualitative Study about Value Cognition and Benefits of Consumer on Culture-Art Products". The current study aims to extend practical implications that enhance the effectiveness of marketing strategies among the producing and policy agencies in the industry. The purpose of this study is to investigate dimensions of value cognition, benefits and attributes of culture-art products, and identify the effects of consumer value cognition on benefits and attributes. The questionnaire was developed based on the conceptual structure of qualitative research and previous researches. It was composed of value cognition, benefits, attributes of culture-art products and demographic variables. This survey was conducted on-line and off-line among a total of 662 persons ranging from their teens to their 50's who were living in Seoul, Gyeonggi-do, various metropolitan cities, and small and medium-sized cities. The data collected was analyzed by factor analysis and path analysis using SPSS WIN 18.0 and AMOS 16.0. This empirical study found that the dimensions of value cognition of culture-art products were categorized into personal goods, aesthetic goods and public property. This shows that the consumers perceive culture-art products as products that are worthy enough to pay the costs not just for personal benefits but also for their social values. Also the formation of value cognition for culture-art products requires special conditions unlike that for physical consumer goods and services, which simply require marketing stimuli. The dimensions of benefits pursued by consuming culture-art products were found to be composed of four types - pursuit of aesthetic benefits, pursuit of actual benefits, pursuit of emotional benefits, and pursuit of conspicuous character. This result implies that people consume culture-art products not just to pursue pleasure from emotional and intelligent satisfaction as well as social relations, but also to seek the needs and benefits embodied at a social level. The dimensions of attributes of culture-art products had seven different factors, - environmental, price, evaluation, people, artwork, composition, and personal relations - which is plentiful. This is because the attributes of culture-art products are very complicated compared to other consumer goods or services. Since culture-art products include not just cultural or artistic works but also all physical, human, environmental, and systemic elements of the products in a comprehensive manner, consumers perceive everything they experience in the process of consuming culture-art products as part of the products. The dimensions of value cognition was found to affect attributes of the products, mostly using pursued benefits as a mediating factors. This result is consistent with the result of qualitative research, and proves that applying the means-end chain theory in the reverse direction is reasonable. The result can be interpreted that consumers' value cognitions for culture-art products turns into actual benefits leading to consumers' decisions. Furthermore, this result reveals that when consumers choose culture-art products, they take into account the attributes of culture-art products depending on the benefits they pursue. These results confirm that despite their conceptual and abstract attributes, culture-art products have values that contribute to actual benefits for individual consumers and society. Hence, value cognition generates benefits to be pursued and this in turn affects the consumers' choices of attributes on products. Based on the conceptual structure of consumers' value cognitions on culture-art products and its dimensions, it is possible to find detailed methods to provide opportunities for education and training to form and reinforce positive value cognition on culture-art products. And through those methods, it will be possible to develop attributes of culture-art products according to the dimensions of pursued benefits, and allow conceptual products become the subject to valuable consumption in real life. These results provide theoretical understanding of consumer behavior in culture marketing and useful information to culture-art producers, companies that use culture and art, and government agencies that use culture-art as a mean to improve the public perception of quality of life. As a follow up on this study, there should be experimental studies that can develop criteria visualizing the demands of consumers who purchase culture-art products and identify their detailed attributes. Studies that compare characteristics of different areas within the culture-art product category and in-depth studies on a specific area or genre will also be needed. In order to develop marketing strategies for culture-art products, studies on the formation and reinforcement of positive value cognition on culture-art products and education for the development of consumer demand as well as on the development and differentiation of attributes of culture-art products depending on types of consumer groups should also follow.

  • PDF

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.

The Causes of Conflict and the Effect of Control Mechanisms on Conflict Resolution between Manufacturer and Supplier (제조-공급자간 갈등 원인과 거래조정 방식의 갈등관리 효과)

  • Rhee, Jin Hwa
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.55-80
    • /
    • 2012
  • I. Introduction Developing the relationships between companies is very important issue to ensure a competitive advantage in today's business environment (Bleeke & Ernst 1991; Mohr & Spekman 1994; Powell 1990). Partnerships between companies are based on having same goals, pursuing mutual understanding, and having a professional level of interdependence. By having such a partnerships and cooperative efforts between companies, they will achieve efficiency and effectiveness of their business (Mohr and Spekman, 1994). However, it is difficult to expect these ideal results only in the B2B corporate transaction. According to agency theory which is the well-accepted theory in various fields of business strategy, organization, and marketing, the two independent companies have fundamentally different corporate purposes. Also there is a higher chance of developing opportunism and conflict due to natures of human(organization), such as self-interest, bounded rationality, risk aversion, and environment factor as imbalance of information (Eisenhardt 1989). That is, especially partnerships between principal(or buyer) and agent(or supplier) of companies within supply chain, the business contract itself will not provide competitive advantage. But managing partnership between companies is the key to success. Therefore, managing partnership between manufacturer and supplier, and finding causes of conflict are essential to improve B2B performance. In conclusion, based on prior researches and Agency theory, this study will clarify how business hazards cause conflicts on supply chain and then identify how developed conflicts have been managed by two control mechanisms. II. Research model III. Method In order to validate our research model, this study gathered questionnaires from small and medium sized enterprises(SMEs). In Korea, SMEs mean the firms whose employee is under 300 and capital is under 8 billion won(about 7.2 million dollar). We asked the manufacturer's perception about the relationship with the biggest supplier, and our key informants are denied to a person responsible for buying(ex)CEO, executives, managers of purchasing department, and so on). In detail, we contact by telephone to our initial sample(about 1,200 firms) and introduce our research motivation and send our questionnaires by e-mail, mail, and direct survey. Finally we received 361 data and eliminate 32 inappropriate questionnaires. We use 329 manufactures' data on analysis. The purpose of this study is to identify the anticipant role of business hazard (environmental dynamism, asset specificity) and investigate the moderating effect of control mechanism(formal control, social control) on conflict-performance relationship. To find out moderating effect of control methods, we need to compare the regression weight between low versus. high group(about level of exercised control methods). Therefore we choose the structural equation modeling method that is proper to do multi-group analysis. The data analysis is performed by AMOS 17.0 software, and model fits are good statically (CMIN/DF=1.982, p<.000, CFI=.936, IFI=.937, RMSEA=.056). IV. Result V. Discussion Results show that the higher environmental dynamism and asset specificity(on particular supplier) buyer(manufacturer) has, the more B2B conflict exists. And this conflict affect relationship quality and financial outcomes negatively. In addition, social control and formal control could weaken the negative effect of conflict on relationship quality significantly. However, unlikely to assure conflict resolution effect of control mechanisms on relationship quality, financial outcomes are changed by neither social control nor formal control. We could explain this results with the characteristics of our sample, SMEs(Small and Medium sized Enterprises). Financial outcomes of these SMEs(manufacturer or principal) are affected by their customer(usually major company) more easily than their supplier(or agent). And, in recent few years, most of companies have suffered from financial problems because of global economic recession. It means that it is hard to evaluate the contribution of supplier(agent). Therefore we also support the suggestion of Gladstein(1984), Poppo & Zenger(2002) that relational performance variable can capture the focal outcomes of relationship(exchange) better than financial performance variable. This study has some implications that it tests the sources of conflict and investigates the effect of resolution methods of B2B conflict empirically. And, especially, it finds out the significant moderating effect of formal control which past B2B management studies have ignored in Korea.

  • PDF

Improved Social Network Analysis Method in SNS (SNS에서의 개선된 소셜 네트워크 분석 방법)

  • Sohn, Jong-Soo;Cho, Soo-Whan;Kwon, Kyung-Lag;Chung, In-Jeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.117-127
    • /
    • 2012
  • Due to the recent expansion of the Web 2.0 -based services, along with the widespread of smartphones, online social network services are being popularized among users. Online social network services are the online community services which enable users to communicate each other, share information and expand human relationships. In the social network services, each relation between users is represented by a graph consisting of nodes and links. As the users of online social network services are increasing rapidly, the SNS are actively utilized in enterprise marketing, analysis of social phenomenon and so on. Social Network Analysis (SNA) is the systematic way to analyze social relationships among the members of the social network using the network theory. In general social network theory consists of nodes and arcs, and it is often depicted in a social network diagram. In a social network diagram, nodes represent individual actors within the network and arcs represent relationships between the nodes. With SNA, we can measure relationships among the people such as degree of intimacy, intensity of connection and classification of the groups. Ever since Social Networking Services (SNS) have drawn increasing attention from millions of users, numerous researches have made to analyze their user relationships and messages. There are typical representative SNA methods: degree centrality, betweenness centrality and closeness centrality. In the degree of centrality analysis, the shortest path between nodes is not considered. However, it is used as a crucial factor in betweenness centrality, closeness centrality and other SNA methods. In previous researches in SNA, the computation time was not too expensive since the size of social network was small. Unfortunately, most SNA methods require significant time to process relevant data, and it makes difficult to apply the ever increasing SNS data in social network studies. For instance, if the number of nodes in online social network is n, the maximum number of link in social network is n(n-1)/2. It means that it is too expensive to analyze the social network, for example, if the number of nodes is 10,000 the number of links is 49,995,000. Therefore, we propose a heuristic-based method for finding the shortest path among users in the SNS user graph. Through the shortest path finding method, we will show how efficient our proposed approach may be by conducting betweenness centrality analysis and closeness centrality analysis, both of which are widely used in social network studies. Moreover, we devised an enhanced method with addition of best-first-search method and preprocessing step for the reduction of computation time and rapid search of the shortest paths in a huge size of online social network. Best-first-search method finds the shortest path heuristically, which generalizes human experiences. As large number of links is shared by only a few nodes in online social networks, most nods have relatively few connections. As a result, a node with multiple connections functions as a hub node. When searching for a particular node, looking for users with numerous links instead of searching all users indiscriminately has a better chance of finding the desired node more quickly. In this paper, we employ the degree of user node vn as heuristic evaluation function in a graph G = (N, E), where N is a set of vertices, and E is a set of links between two different nodes. As the heuristic evaluation function is used, the worst case could happen when the target node is situated in the bottom of skewed tree. In order to remove such a target node, the preprocessing step is conducted. Next, we find the shortest path between two nodes in social network efficiently and then analyze the social network. For the verification of the proposed method, we crawled 160,000 people from online and then constructed social network. Then we compared with previous methods, which are best-first-search and breath-first-search, in time for searching and analyzing. The suggested method takes 240 seconds to search nodes where breath-first-search based method takes 1,781 seconds (7.4 times faster). Moreover, for social network analysis, the suggested method is 6.8 times and 1.8 times faster than betweenness centrality analysis and closeness centrality analysis, respectively. The proposed method in this paper shows the possibility to analyze a large size of social network with the better performance in time. As a result, our method would improve the efficiency of social network analysis, making it particularly useful in studying social trends or phenomena.

Performance Analysis of Frequent Pattern Mining with Multiple Minimum Supports (다중 최소 임계치 기반 빈발 패턴 마이닝의 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • Data mining techniques are used to find important and meaningful information from huge databases, and pattern mining is one of the significant data mining techniques. Pattern mining is a method of discovering useful patterns from the huge databases. Frequent pattern mining which is one of the pattern mining extracts patterns having higher frequencies than a minimum support threshold from databases, and the patterns are called frequent patterns. Traditional frequent pattern mining is based on a single minimum support threshold for the whole database to perform mining frequent patterns. This single support model implicitly supposes that all of the items in the database have the same nature. In real world applications, however, each item in databases can have relative characteristics, and thus an appropriate pattern mining technique which reflects the characteristics is required. In the framework of frequent pattern mining, where the natures of items are not considered, it needs to set the single minimum support threshold to a too low value for mining patterns containing rare items. It leads to too many patterns including meaningless items though. In contrast, we cannot mine any pattern if a too high threshold is used. This dilemma is called the rare item problem. To solve this problem, the initial researches proposed approximate approaches which split data into several groups according to item frequencies or group related rare items. However, these methods cannot find all of the frequent patterns including rare frequent patterns due to being based on approximate techniques. Hence, pattern mining model with multiple minimum supports is proposed in order to solve the rare item problem. In the model, each item has a corresponding minimum support threshold, called MIS (Minimum Item Support), and it is calculated based on item frequencies in databases. The multiple minimum supports model finds all of the rare frequent patterns without generating meaningless patterns and losing significant patterns by applying the MIS. Meanwhile, candidate patterns are extracted during a process of mining frequent patterns, and the only single minimum support is compared with frequencies of the candidate patterns in the single minimum support model. Therefore, the characteristics of items consist of the candidate patterns are not reflected. In addition, the rare item problem occurs in the model. In order to address this issue in the multiple minimum supports model, the minimum MIS value among all of the values of items in a candidate pattern is used as a minimum support threshold with respect to the candidate pattern for considering its characteristics. For efficiently mining frequent patterns including rare frequent patterns by adopting the above concept, tree based algorithms of the multiple minimum supports model sort items in a tree according to MIS descending order in contrast to those of the single minimum support model, where the items are ordered in frequency descending order. In this paper, we study the characteristics of the frequent pattern mining based on multiple minimum supports and conduct performance evaluation with a general frequent pattern mining algorithm in terms of runtime, memory usage, and scalability. Experimental results show that the multiple minimum supports based algorithm outperforms the single minimum support based one and demands more memory usage for MIS information. Moreover, the compared algorithms have a good scalability in the results.

Studies on the Effect of Diffusion Process to Decay Resistance of Mine Props (간이처리법(簡易處理法)에 의한 갱목(坑木)의 내부효력(耐腐効力)에 관한 연구(硏究))

  • Shim, Chong Supp;Shin, Dong So;Jung, Hee Suk
    • Journal of Korean Society of Forest Science
    • /
    • v.29 no.1
    • /
    • pp.1-19
    • /
    • 1976
  • This study has been made to make an observation regarding present status of the coal mine props which is desperately needed for coal production, despite of great shortage of the timber resources in this country, and investigate the effects of diffusion process on the decay resistances of the mine props as applied preservatives of Malenit and chromated zinc chloride. The results are as follows. 1. Present status of the coal mine props Total demand of coal mine props in the year of 1975 was approximately 456 thousand cubic meters. The main species used for mine props are conifer (mainly Pinus densiflora) and hardwood (mainly Quercus). Portions between them are half and half. With non fixed specification, wide varieties of timber in size and form are used. And volume of wood used per ton-of coal production shows also wide range from 0.017 cubic meter to 0.03 cubic meter. 2. Decay resistance test a) The oven dry weight decreased between untreated specimen and treated specimen has not shown any significantly, although it has shown some differences in average values between them. It may be caused by the shorter length of the test. b) The strength of compression test between untreated specimen and treated specimen has also shown the same results as shown in case of weight decrease. Reasons assumed are the same. c) The amounts of the extractives in one percent of sodium hydroxide (NaOH) between untreated and treated specimen have shown the large value in case of untreated specimen than that of treated. 3. The economical benifit between untreated and treated wood when applied in field has seen better in long term base in case of treated wood, although the primary cost of treated wood add a little bit more cost than that of the untreated wood.

  • PDF