• Title/Summary/Keyword: 실외환경

Search Result 390, Processing Time 0.029 seconds

Development of Real-time Rainfall Sensor Rainfall Estimation Technique using Optima Rainfall Intensity Technique (Optima Rainfall Intensity 기법을 이용한 실시간 강우센서 강우 산정기법 개발)

  • Lee, Byung Hun;Hwang, Sung Jin;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.429-429
    • /
    • 2019
  • 최근 들어 이상기후 등 다양한 환경적 요인으로 인해 국지적이고 집중적인 호우가 빈발하고 있으며 도로상의 교통체증과 도로재해가 사회적으로 큰 문제가 되고 있다. 이러한 문제를 해결하기 위해서는 실시간, 단기간 이동성 강우정보 기술과 도로 기상정보를 활용할 수 있는 방법에 대한 연구가 필요하다. 본 연구는 차량의 AW(AutoWiping) 기능을 위해 장착된 강우센서를 이용하여 강우정보를 생산하는 기술을 개발하고자 하였다. 강우센서는 총 4개의 채널로 이루어져있고, 초당 250개의 광신호 데이터를 수집하며, 1시간이면 약 360만 개의 데이터가 생산되게 된다. 5단계의 인공강우를 재현하여 실내 인공강우실험을 실시하고 이를 통해 강우센서 데이터와 강우량과의 상관성을 W-S-R관계식으로 정의하였다. 실내실험데이터와 비교하여 외부환경 및 데이터 생성조건이 다른 실외 데이터의 누적값을 계산하기 위해 Threshold Map 방식을 개발하였다. 강우센서에서 생산되는 대량의 데이터를 이용하여 실시간으로 정확한 강우정보를 생산하기 위해 빅 데이터 처리기법을 사용하여 계산된 실내 데이터의 Threshold를 강우강도 및 채널에 따라 평균값을 계산하고 $4{\times}5$ Threshold Map(4 = 채널, 5 = 강우정보 사상)을 생성하였고 강우센서 기반의 강우정보 생산에 적합한 빅데이터 처리기법을 선정하기 위하여 빅데이터 처리기법 중 Gradient Descent와 Optima Rainfall Intensity을 적용하여 분석하고 결과를 지상 관측강우와 비교검증을 하였다. 이 결과 Optima Rainfall Intensity의 적합도를 검증하였고 실시간으로 관측한 8개 강우사상을 대상으로 강우센서 강우를 생산하였다.

  • PDF

Analysis of Wireless Signal Strength in Indoor Environment with Film-Type Dual-Band Frequency Selective Structure (필름형 이중 대역 주파수 선택 구조가 적용된 실내 환경의 무선신호강도 분석)

  • Cho, Sung-Sil;Lee, Sang-Hwa;Yoon, Sun-Hong;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper, we propose a film-type dual-band frequency selective structure for improving the wireless communication environment in a building. The proposed frequency-selective structure is a miniaturized structure that can control the resonant frequencies of 2.4 GHz and 5 GHz dual band through simple design parameters. We fabricated the frequency-selective surface by screen printing using conductive ink on a thin transparent film and confirmed its performance by measurement. We analyzed the attenuation performance of the unnecessary signal from the outside when the frequency-selective structure designed using the software to analyze the propagation environment performance is applied to the building. To verify the analytical results, the signal strength of the indoor environment was measured by applying the frequency-selective film fabricated on the inner wall of the actual building. The measurement results show that the dual-band frequency-selective film has 29.4 dB and 15.94 dB attenuation performance in the 2.4 GHz and 5 GHz, respectively.

Design and Implementation of Testbed for Cooperative Localization using Area Reduction Method (영역 축소 기법을 이용한 협력 위치추정 테스트베드 설계 및 구현)

  • Jeong, Seung-Hui;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.677-683
    • /
    • 2009
  • In this study, we designed and implemented testbed for localization algorithm by using a area reduction method in outdoor environment. The proposed algorithm used 3 steps of area reduction method, which estimated blind nodes position. Also, we have experimented with using a Zigbee module for 5 fixed reference nodes and 4 blind nodes in sensor field of $60m{\times}23m$. The results show that our algorithm is improved the localization accuracy even at the number of ref. node is fixed and the number of blind node is increased. In future research, we will be adding the function of seamless localization in indoor and NLOS(non-line of sight) environment.

  • PDF

Acquisition of 3D Spatial Data for Indoor Environment by Integrating Laser Scanner and CCD Sensor with IMU (실내 환경에서의 3차원 공간데이터 취득을 위한 IMU, Laser Scanner, CCD 센서의 통합)

  • Suh, Yong-Cheol;Nagai, Masahiko
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • 3D data are in great demand for pedestrian navigation recently. For pedestrian navigation, we needs to reconstruct 3D model in detail from people's eye. In order to present spatial features in detail for pedestrian navigation, it is indispensable to develop 3D model not only in outdoor environment but also in indoor environment such as underground shopping complex. However, it is very difficult to acquire 3D data efficiently by mobile mapping without GPS. In this research, 3D shape was acquired by Laser scanner, and texture by CCD(Charge Coupled Device) sensor. Continuous changes position and attitude of sensors were measured by IMU(Inertial Measurement Unit). Moreover, IMU was corrected by relative orientation of CCD images without GPS(Global Positioning System). In conclusion, Reliable, quick, and handy method for acquiring 3D data for indoor environment is proposed by a combination of a digital camera and a laser scanner with IMU.

  • PDF

Study on the MIMO Channel Characteristics Considering Urban Canyon at the Microwave Bands (도심 협곡 환경에서의 마이크로파 대역 MIMO 채널 특성에 관한 연구)

  • Lim, Jae-Woo;Kwon, Se-Woong;Moon, Hyun-Wook;Park, Yoon-Hyun;Yoon, Young-Joong;Yook, Jong-Gwan;Jeong, Jin-Soub;Kim, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1065-1071
    • /
    • 2007
  • In this paper, in order to research spectrum usage efficiency in urban canyon environment at the microwave band, measurement and channel capacity analysis of multi-antenna technology is described. The measurement data obtained from 3 - 4 stories building area used and the propagation characteristics at the 3.7 and 8GHz band are analysed and compared. In case of $2{\times}2$ MIMO, channel capacities of 3.7 and 8 GHz band are calculated to 9.1 bps/Hz and S bps/Hz and in case of $4{\times}4$ MIMO, 21 bps/Hz and 12.5 bps/Hz respectively. Considering the coverage, SNR and channel capacity in urban environment, MIMO propagation characteristics of 3.7 GHz are more predominate than those of 8 GHz.

Adaptive OFDM with Channel Predictor in Broadband Wireless Mobile Communications (광대역 무선 이동 통신에서 채널 예측기를 갖는 적응 OFDM)

  • 황태진;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.370-377
    • /
    • 2004
  • In this paper, we present an adaptive modulation technique for orthogonal frequency division multiplexing (OFDM) for broadband wireless communications. Also, using improved channel prediction, we enhance the performance of adaptive OFDM in high mobility environments. Adaptive modulation technique has been shown to achieve reliable high-rate data transmission over frequency-selective fading channel when OFDM is employed. This scheme requires the accurate channel information between two stations for a better performance. In an outdoor high mobility environment, most of adaptive OFDM systems have to be given the channel information transmitted from the receiver. Even if it is possible, there is some delay. Moreover, the channel impulse response between two stations is very rapidly varied. If the channel information is obsolete at the time of transmission, then poor system performance will result. In order to solve this problem, we propose adaptive OFDM with improved channel predictor. The proposed bit allocation algorithm has a lower complexity and the proposed scheme mitigates the effect of channel delay. Robust approach is less sensitive to outdated channel information. Performance results show that the proposed scheme can achieve considerable performance enhancement.

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

Growth of Minuartia laricina, Arenaria juncea, and Corydalis speciose in Field with Various Soil Water Contents (토양 수분 함량에 따른 너도개미자리, 벼룩이울타리, 산괴불주머니의 노지 생육)

  • Gil, Min;Kwon, Hyuck Hwan;Kwon, Young Hyun;Jung, Mi Jin;Kim, Sang Yong;Rhie, Yong Ha
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.344-353
    • /
    • 2020
  • Plants native in Korea have not only ornamental values but also have excellent environmental adaptability, so they can be used as garden plants. Studies on proper volumetric water content (VWC) of substrates have been reported, but many have been conducted in glasshouse conditions where environmental factors were controlled. When considering garden planting, it is necessary to perform the automated irrigation system in outdoor conditions where rainfall occurs at frequent intervals. This research aimed to investigate the VWC suitable for the growth of Minuartia laricina, Arenaria juncea, and Corydalis speciosa in open filed. Sandy soil which consisted of particles of weathered rock was used, and the VWC of 0.15, 0.20, 0.25, and 0.30 ㎥·m-3 was maintained using an automated irrigation system with capacitance soil moisture sensors and a data logger. No significant differences in growth and antioxidant enzymes activity of A. juncea were observed among VWC treatments. However, the survival rate was low at VWC 0.30 ㎥·m-3 treatment, which was the highest soil moisture content. Even considering the efficiency of water use, we recommended that VWC 0.15-0.20 ㎥·m-3 is suitable for the cultivation of A. juncea. Minuartia laricina showed better growth with lower VWC. Because of frequent rainfall in open field, plant volume and survival rate was high even in VWC 0.15 ㎥·m-3 treatment. In C. speciosa, the plant height, number of shoots and lateral shoots, and fresh and dry weight were higher in plants grown in VWC 0.25 ㎥·m-3 as compared with that in the plants grown at 0.15, 0.20, and 0.30 ㎥·m-3. Based on these results, M. laricina needed less water in open filed, and A. juncea and C. speciosa required higher VWC, but excessive water should be avoided.

Analysis of Thermal Environment Improving Effects of Green Curtain in Summer (Green Curtain 형식의 벽면녹화시스템을 통한 여름철 건물 실내 열환경 비교 분석)

  • Lee, Sunyoung;Jo, Sangman;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.5
    • /
    • pp.80-89
    • /
    • 2022
  • In order to solve the limitations of horizontal thermal environment improvement, this study compared the thermal environment of the indoor and outdoor of a building in summer according to the presence or absence of a green curtain, a vertical greening method. In the summer of 2021, the air temperature, relative humidity, wind speed, and shortwave and longwave radiation were measured at a central point inside a building and the grass field outside of the building to determine the human thermal sensation index, PET and UTCI. As a result, the green curtain showed an average 1.6℃ cooler air temperature during the daytime, but it did not have an effect at night. For relative humidity, it showed higher humidity indoors by an average of 5.6% and 1.0% during the daytime and at night, respectively. Wind speed was 1.4-1.8 ms-1 and 1.4-1.5 ms-1 higher outdoors on average during the daytime and at night, respectively, showing a high value outdoors regardless of whether a green curtain was installed. The green curtain showed an average indoor mean radiant temperature reduction effect of 4.7℃ during the daytime, but it did not have an effect at night. In PET and UTCI, the green curtain reduced the indoor PET by about a 1/3 level, an average of 2.1℃, and the indoor UTCI by about a 1/6 level, an average of 1.1℃, during the daytime. However, no effects appeared in PET and UTCI at night. For landscape planning, a green curtain can effectively modify the thermal environment during the daytime in summer.

Web and Building Information Model-based Visualization of Indoor Environment -Focusing on the Data of Temperature, Humidity and Dust Density- (웹 및 건물정보모델기반 실내 환경 디지털 시각화 -온습도와 미세먼지 농도 데이터를 중심으로-)

  • Huang, Jin-hua;Lee, Jin-Kook;Jeon, Gyu-yeob
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.2
    • /
    • pp.327-336
    • /
    • 2017
  • People spend most of their time in the indoor environment. Among the various indoor environmental factors, air and thermal environment directly affect human's health and efficiency of work. Therefore, efficient monitoring of indoor environment is highly important. For assisting the residents to understand the state of the indoor environment much easier and more intuitive, this paper analyze the visualization cases of the conventional indoor environment. Then explore the direction of improvement for the visualization method to propose a more effective visualization method. The approach of web and BIM(Building Information Model)-based visualization of indoor environment proposed in this study is composed of four major parts: 1) the generation of the model data of the building; 2) the generation of indoor environmental data; 3) the creation of visualization elements; 4) data mapping. Then it realized through the generating process of visualization results.