• Title/Summary/Keyword: 실시간 영상복원

Search Result 124, Processing Time 0.029 seconds

A 3-stage Pipelined Architecture for Multi-View Images Decoder3 (단계 파이프라인 구조를 갖는 Multi-View 영상 디코더)

  • Bae, Chang-Ho;Yang, Yeong-Yil
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.104-111
    • /
    • 2002
  • In this paper, we proposed the architecture of the decoder which implements the multi-view images decoding algorithm. The study of the hardware structure of the multi-view image processing has not been accomplished. The proposed multi-view images decoder operates in a three stage pipelined manner and extracts the depth of the pixels of the decoded image every clock. The multi-view images decoder consists of three modules, Node selector which transfers the value of the nodes repeatedly and Depth Extractor which extracts the depth of each pixel from the four values of the nodes and Affine transformer which generates the projecting position on the image plane from the values of the pixels and the specified viewpoint. The proposed architecture is designed and simulated by the Max+plus II design tool and the operating frequency is 30MHz. The image can be constructed in a real time by the decoder with the proposed architecture.

The tongue dominant region detection using ASM and Color Variance Snake Algorithm (ASM과 컬러 분산 스네이크 기법을 이용한 혀 영역 검출)

  • Pak, Jin-Woong;Song, Won-Chang;Kang, Sun-Kyung;Jung, Sung-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.253-256
    • /
    • 2011
  • 본 논문은 기존의 디지털 설진 시스템이 아닌 임베디드 환경에서의 실시간 설진 진단 방법을 제안한다. 임의의 환경에서 얻어낸 이미지에서 혀 영역의 추출과 추출된 영역에서의 혀의 상태를 진단하는데는 많은 어려움이 있다. 다양한 조명환경에서의 영상으로부터 혀 영역을 추출해 내는 방법으로는 ASM을 이용하는 방법이 있는데 이는 검출률이 낮아 정확도가 떨어진다. 이를 보완하기 위해 본 논문에서는 ASM과 물체 외곽 정보 복원에 기반을 둔 컬러 분산 스테이크 기법을 사용하여 정확도를 개선하는 방법을 제안한다.

  • PDF

Design and Implementation of Efficient Decoder for Fractal-based Compressed Image (효율적 프랙탈 영상 압축 복호기의 설계 및 구현)

  • Kim, Chun-Ho;Kim Lee-Sup
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.11-19
    • /
    • 1999
  • Fractal image compression algorithm has been studied mostly not in the view of hardware but software. However, a general processor by software can't decode fractal compressed images in real-time. Therefore, it is necessary that we develop a fast dedicated hardware. However, design examples of dedicated hardware are very rare. In this paper, we designed a quadtree fractal-based compressed image decoder which can decode $256{\times}256$ gray-scale images in real-time and used two power-down methods. The first is a hardware-optimized simple post-processing, whose role is to remove block effect appeared after reconstruction, and which is easier to be implemented in hardware than non-2' exponents weighted average method used in conventional software implementation, lessens costs, and accelerates post-processing speed by about 69%. Therefore, we can expect that the method dissipates low power and low energy. The second is to design a power dissipation in the multiplier can be reduced by about 28% with respect to a general array multiplier which is known efficient for low power design in the size of 8 bits or smaller. Using the above two power-down methods, we designed decoder's core block in 3.3V, 1 poly 3 metal, $0.6{\mu}m$ CMOS technology.

  • PDF

Steering Gaze of a Camera in an Active Vision System: Fusion Theme of Computer Vision and Control (능동적인 비전 시스템에서 카메라의 시선 조정: 컴퓨터 비전과 제어의 융합 테마)

  • 한영모
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.39-43
    • /
    • 2004
  • A typical theme of active vision systems is gaze-fixing of a camera. Here gaze-fixing of a camera means by steering orientation of a camera so that a given point on the object is always at the center of the image. For this we need to combine a function to analyze image data and a function to control orientation of a camera. This paper presents an algorithm for gaze-fixing of a camera where image analysis and orientation control are designed in a frame. At this time, for avoiding difficulties in implementing and aiming for real-time applications we design the algorithm to be a simple closed-form without using my information related to calibration of the camera or structure estimation.

Low Resolution Depth Interpolation using High Resolution Color Image (고해상도 색상 영상을 이용한 저해상도 깊이 영상 보간법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.2 no.4
    • /
    • pp.60-65
    • /
    • 2013
  • In this paper, we propose a high-resolution disparity map generation method using a low-resolution time-of-flight (TOF) depth camera and color camera. The TOF depth camera is efficient since it measures the range information of objects using the infra-red (IR) signal in real-time. It also quantizes the range information and provides the depth image. However, there are some problems of the TOF depth camera, such as noise and lens distortion. Moreover, the output resolution of the TOF depth camera is too small for 3D applications. Therefore, it is essential to not only reduce the noise and distortion but also enlarge the output resolution of the TOF depth image. Our proposed method generates a depth map for a color image using the TOF camera and the color camera simultaneously. We warp the depth value at each pixel to the color image position. The color image is segmented using the mean-shift segmentation method. We define a cost function that consists of color values and segmented color values. We apply a weighted average filter whose weighting factor is defined by the random walk probability using the defined cost function of the block. Experimental results show that the proposed method generates the depth map efficiently and we can reconstruct good virtual view images.

  • PDF

An Efficient Shaking Correction Techniques for Image Stabilization of Moving Vehicles (이동차량 영상 안정화를 위한 효율적인 흔들림 보정 기법)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.155-162
    • /
    • 2014
  • In this paper, we propose an efficient shaking correction techniques for a moving vehicle image stabilization. The proposed shaking correction techniques was calculated cumulative histogram for the conversion and the separating information via color separation of video image frame of the input received. And it were to matching the histogram for match the color information as compensation result of the shaking vehicle video imaging. In this paper, the proposed the shaking correction techniques was obtained to the restoration result when compared to the existing shaking correction techniques that the smallest noise and better the naturalness of image through stabilization of luminance level and color level. Also, the imaging stabilization method was demonstrated the efficiency compared to other methods through to the real-time processing without the use of the memory.

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling (3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식)

  • Suk, Heung-Il;Lee, Ji-Hong;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.780-788
    • /
    • 2008
  • Modeling hand poses and tracking its movement are one of the challenging problems in computer vision. There are two typical approaches for the reconstruction of hand poses in 3D, depending on the number of cameras from which images are captured. One is to capture images from multiple cameras or a stereo camera. The other is to capture images from a single camera. The former approach is relatively limited, because of the environmental constraints for setting up multiple cameras. In this paper we propose a method of reconstructing 3D hand poses from a 2D input image sequence captured from a single camera by means of Belief Propagation in a graphical model and recognizing a finger clicking motion using a hidden Markov model. We define a graphical model with hidden nodes representing joints of a hand, and observable nodes with the features extracted from a 2D input image sequence. To track hand poses in 3D, we use a Belief Propagation algorithm, which provides a robust and unified framework for inference in a graphical model. From the estimated 3D hand pose we extract the information for each finger's motion, which is then fed into a hidden Markov model. To recognize natural finger actions, we consider the movements of all the fingers to recognize a single finger's action. We applied the proposed method to a virtual keypad system and the result showed a high recognition rate of 94.66% with 300 test data.

Motion Capture using both Human Structural Characteristic and Inverse Kinematics (인체의 구조적 특성과 역운동학을 이용한 모션 캡처)

  • Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.20-32
    • /
    • 2010
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.

Adaptive Contrast Enhancement in DCT Domain (DCT영역에서의 적응적 대비 개선에 관한 연구)

  • Jeon, Yong-Joon;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.73-78
    • /
    • 2005
  • Images coded by DCT based compression contain several quality degradations by quantization process. Among them contrast distortion is the important one because human eyes are sensitive to contrast. In case of low bit-rate coded image, we can not get an image having good quality due to quantization error. In this paper, we suggest a new scheme to enhance image's contrast in DCT domain. Proposed method enhances only edge regions. Homogeneous regions are not considered in this method. $8{\times}8$ DCT coefficient blocks are decomposed to $4{\times}4$ sub-blocks for detail edge region discrimination. we could apply this scheme to real-time application because proposed scheme is DCT based method.