• Title/Summary/Keyword: 실시간 동적전압조정

Search Result 3, Processing Time 0.02 seconds

Low Power EccEDF Algorithm for Real-Time Operating Systems (실시간 운영체제를 위한 저전력 EccEDF 알고리듬)

  • Lee, Min-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • For battery based real-time embedded systems, high performance to meet their real-time constraints and energy efficiency to extend battery life are both essential. Real-Time Dynamic Voltage Scaling (RT-DVS) has been a key technique to satisfy both requirements. In this paper, we present an efficient RT-DVS algorithm called EccEDF that is designed based on ccEDF. The proposed algorithm can precisely calculate the maximum unused utilization with consideration of the elapsed time while keeping the structural simplicity of ccEDF, which overlooked the time needed to run the task in calculating the available slack. The maximum unused utilization can be calculated by dividing remaining execution time($C_i-cc_i$) by remaining time($P_i-E_i$) on completion of the task and it is proved using Fluid scheduling model. We also show that the algorithm outperforms ccEDF in practical applications which is modelled using a PXA250 and a 0.28V-to-1.2V wide-operating-range IA-32 processor model.

Power-Aware Scheduling for Mixed Real-Time Tasks (주기성과 산발성 태스크가 혼합된 시스템을 위한 전력절감 스케줄링 기법)

  • Gong, Min-Sik;Jeong, Gun-Jae;Song, Ye-Jin;Jung, Myoung-Jo;Cho, Moon-Haeng;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.83-93
    • /
    • 2007
  • In this paper, we address a power-aware scheduling algorithm for a mixed real-time system which consists of periodic and sporadic tasks, each of which is characterized by its minimum period, worst-case execution requirement and deadline. We propose a dynamic voltage scaling algorithm called DVSMT(DVS for mixed tasks), which dynamically scales down the supplying voltage(and thus the frequency) using on-line distribution of the borrowed resources when jobs complete while still meeting their deadlines. With this scheme, we could reduce more energy consumption. As the proposed algorithm can be easily incorporated with RTOS(Real-Time Operating System), it is applicable for handhold devices and sensor network nodes that use a limited battery power. Simulation results show that DVSMT saves up 60% more than the existing algorithms both in the periodic-task and mixed-task systems.

Low-Energy Intra-Task Voltage Scheduling using Static Timing Analysis (정적 시간 분석을 이용한 저전력 태스크내 전압 스케줄링)

  • Sin, Dong-Gun;Kim, Ji-Hong;Lee, Seong-Su
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.561-572
    • /
    • 2001
  • Since energy consumption of CMOS circuits has a quadratic dependency on the supply voltage, lowering the supply voltage is the most effective way of reducing energy consumption. We propose an intra-task voltage scheduling algorithm for low-energy hard real-time applications. Based on a static timing analysis technique, the proposed algorithm controls the supply voltage within an individual task boundary. By fully exploiting all the slack times, as scheduled program by the proposed algorithm always complete its execution near the deadline, thus achieving a high energy reduction ratio. In order to validate the effectiveness of the proposed algorithm, we built a software tool that automatically converts a DVS-unaware program into an equivalent low-energy program. Experimental results show that the low-energy version of an MPEG-4 encoder/decoder (converted by the software tool) consumes less than 7~25% of the original program running on a fixed-voltage system with a power-down mode.

  • PDF