• Title/Summary/Keyword: 실시간 데이터

Search Result 6,122, Processing Time 0.028 seconds

Effects of Impact of Climate Change on Livestock Productivity - For bullocks, dairy, pigs, laying hens, and broilers - (기후변화가 축산 생산성에 미치는 영향 -거세우, 낙농, 양돈, 산란계, 육계를 대상으로-)

  • Lee, H.K.;Park, H.M.;Shin, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The global impact of climate change on agriculture is now increasing. The purpose of this study was to investigate the effect of climate change on livestock productivity. The variables that have the greatest influence on climate change factors were examined through previous studies and expert surveys. We also used the actual productivity data of livestock farmers to investigate the relationship with climate change. In order to evaluate the climate for changes in livestock productivity, national representative data (such as bullocks, dairy, pigs, laying hens, and broilers) were surveyed in Korea. Also, to select and classify evaluation indexes, we selected climate change factor variables as prior studies and studied the weighting factor of climate variable factors. In this study, the researchers of industry, academia, and farmers in the livestock sector conducted questionnaires on the indicators of vulnerability to climate change using experts, and then weighed the selected indicators using the hierarchical analysis process (AHP). In order to verify the validity of the evaluation index, was examined using domestic climate data (temperature, precipitation, humidity, etc.). Correlation and regression analysis were performed. The empirical relationship between climate change and livestock productivity was examined through this study. As a result, we used data with high reliability of statistical analysis and found that there are significant variables.

Classification of Cultivation Region for Soybean (Glycine max [L.]) in South Korea Based on 30 Years of Weather Indices (평년기상을 활용한 우리나라의 콩 재배지역 구분)

  • Dong-Kyung Yoon;Jaesung Park;Jinhee Seo;Okjae Won;Man-Soo Choi;Hyeon Su Lee;Chaewon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • A region can be divided into cultivation zones based on homogeneity in weather variables that have the greatest influence on crop growth and yield. This study classified the cultivation zone of soybean using weather indices as a prior study to classify the agroclimatic zone of soybean. Meteorological factors affecting soybeans were determined through correlation analysis over a 10 year period (from 2013 to 2022) using data from the Miryang and Suwon regions collected from the soybean yield trial database of the Rural Development Administration, Korea and the meteorological database of the Korea Meteorological Administration. The correlation between growth characteristics and the minimum temperature, daily temperature range, and precipitation were high during the vegetative growth stages. Moreover, the correlation between yield components and the maximum temperature, daily temperature range, and precipitation were high during the reproductive growth stages. As a result of k-means clustering, soybean cultivation zones were divided into three zones. Zone 1 was the central inland region and southern Gyeonggi-do; Zone 2 was the southern part of the west coast, the southern part of the east coast, and the South Sea; and Zone 3 included parts of eastern Gyeonggi-do, Gangwon-do, and areas with high altitudes. Zone 1, which has a wide latitude range, was further subdivided into three cultivation zones. The results of this study may provide useful information for estimating agrometeorological characteristics and predicting the success of soybean cultivation in South Korea.