• Title/Summary/Keyword: 실리콘 음극

Search Result 81, Processing Time 0.018 seconds

Fabrication and packaging of the vacuum magnetic field sensor (자장 세기 측정용 진공 센서의 제작 및 패키징)

  • Park, Heung-Woo;Park, Yun-Kwon;Lee, Duck-Jung;Kim, Chul-Ju;Park, Jung-Ho;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.292-303
    • /
    • 2001
  • This work reports the tunneling effects of the lateral field emitters. Tunneling effect is applicable to the VMFS(vacuum magnetic field sensors). VMFS uses the fact that the trajectory of the emitted electrons are curved by the magnetic field due to Lorentz force. Polysilicon was used as field emitters and anode materials. Thickness of the emitter and the anode were $2\;{\mu}m$, respectively. PSG(phospho-silicate-glass) was used as a sacrificial layer and it was etched by HF at a releasing step. Cantilevers were doped with $POCl_3(10^{20}cm^{-3})$. $2{\mu}m$-thick cantilevers were fabricated onto PSG($2{\mu}m$-thick). Sublimation drying method was used at releasing step to avoid stiction. Then, device was vacuum sealed. Device was fixed to a sodalime-glass #1 with silver paste and it was wire bonded. Glass #1 has a predefined hole and a sputtered silicon-film at backside. The front-side of the device was sealed with sodalime-glass #2 using the glass frit. After getter insertion via the hole, backside of the glass #1 was bonded electrostatically with the sodalime-glass #3 at $10^{-6}\;torr$. After sealing, getter was activated. Sealing was successful to operate the tunneling device. The packaged VMFS showed very small reduced emission current compared with the chamber test prior to sealing. The emission currents were changed when the magnetic field was induced. The sensitivity of the device was about 3%/T at about 1 Tesla magnetic field.

  • PDF