• Title/Summary/Keyword: 실리콘 망간 슬래그

Search Result 2, Processing Time 0.017 seconds

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.

Physical Suitability Evaluation of Silicon manganese slag as Aggregate for Concrete (콘크리트용 골재로서 실리콘 망간슬래그의 물리적 적합성 평가)

  • Jung, Ui-In;Kim, Bong-Joo;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.41-42
    • /
    • 2015
  • The concrete aggregate generates carbon dioxide in production but its demanding is gradually increased in accordance with the depletion of natural resources. Therefore we evaluated compatibility and basic physical properties of Silicon manganese slag generated in iron production as an applicable concrete aggregate. In our test, the silicon maganese slag shows 2.8g/㎥ of density in 10mm of maximum particle size similar to a natural aggregate, and its absorption rate was 0.3% similar to the electric furnace slag. Unit volume weight and ratio of absolute volume was respectively 2,001㎏/㎥ and 51%. Strength properties of Silicon manganese slag will be evaluated with further studies and experiments.

  • PDF