• Title/Summary/Keyword: 실리콘질화막 보호층

Search Result 3, Processing Time 0.021 seconds

Fabrication process for micro magnetostrictive sensor using micromachining technique (Micromachining을 이용한 초소형 자왜 센서 제작공정 연구)

  • 김경석;고중규;임승택;박성영;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 1999
  • The fabrication process for miniaturizing the Electronic Article Surveillance (EAS) sensor was studied using micromachining technique. Two types of sensor structure, free standing membrane type and diving beard type, were proposed and researched for establishing the fabrication process. The membrane type structure was easy to change the sensor shape but had the limitation for miniaturizing, because the size of the sensor depends on the silicon substrate thickness. The diving board type structure has the advantage of miniaturization and of free motion. Since the elastic modulus is not trio high, SiN film is expected to be adequate for the supporting membrane of magnetic sensor. The selectivity of $H_2O_2$for sputtered W with respect to Fe-B-Si, which was studded for magnetic sensor materials, was high enough to be removed after using as a protection layer. Therefore, the diving board type process using the silicon nitride film for the supporter of the sensor material and the sputtered W for protection layer is expected to be useful fur miniaturizing the Electronic Article Surveillance (EAS) sensor.

  • PDF

Passivation Layer Structures with a Silicon Nitride film (질화실리콘막을 사용한 표면보호층 구조에 관한 연구)

  • 이종무
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.6
    • /
    • pp.53-57
    • /
    • 1985
  • Comparisons and analyses were made of the properties of double or triple passivation layer structures composed of APCVD SiOt or PSG and PECVD SiN films with various layer combinations and layer thicknesses. As a result of the analyses of the pro.peHics such as threshold-voltage shift, crack resistance, pinhole density, and moisture reslstancei a con-clusion was reached that the proper passivation layer structure is the double layer consisting of a 4,00$\AA$ or thicker PSG film and a 6,000$\AA$ SiN film.

  • PDF

Electron emission stability from CNTs with various densities (탄소나노튜브 밀도의 변화에 따른 전자방출 안정성 연구)

  • Lim Sung Hoon;Yun Hyun Sik;Ryu Je Hwang;Moon Jong Hyun;Park Kyu Chang;Jang Jin;Moon Byeong Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.258-262
    • /
    • 2005
  • We report on the field emission properties from vertically aligned carbon nanotubes (CNTs) produced by a triode PECVD with a SiNx capping layer on metal catalyst. It is found that the CNTs density can be controlled by the capping layer thickness and decreases with increasing SiNx thickness. The CNT density of $\~$ 104/$cm^{2}$ exhibited highest electron emission characteristics, the threshold field of 1.2 V/$\mu$m and the current density of 0.17 mA/$cm^{2}$ at 3.6 V/$\mu$m. We have carried out investigation of electron emission stability under ambient gas of N2. The electron emission stability was improved with decreasing CNT density. Under $1\times$$10^{-5}$ Torr ambient pressure, the CNTs in 5 $\mu$m hole show electron emission current higher than $1\times$$10^{-4}$ A/cm2 and it's electron emission uniformity has $2\%$.