• Title/Summary/Keyword: 실렌

Search Result 5, Processing Time 0.02 seconds

Si 함유 DLC 필름의 탄성특성 평가

  • 정진원;조성진;이광렬;고대흥
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.136-136
    • /
    • 1999
  • 박막의 탄성특성을 평가하는 방법으로 nano-indentation, Brillouin light scattering measurement, ultrasonic surface wave measurement, bulge test, vibration membrane method 등 여러 가지가 제시되어 왔다. 최근에는 탄성특성을 평가할 수 있는 간단한 방법으로 기판 식각 기법을 이용한 freehang, bridge 방법이 제시되었다. 이중에서 bridge 방법은 간단한 식각 기법을 이용하여 얇은 박막에서도 탄성 특성을 평가할 수 있는 방법으로 제시되었다. 그러나 식각 과정에서 발생하는 patch 부분의 under-cut으로 인해 정확한 bridge의 길이를 측정할 수 없게 되어 오차가 발생하고 있다. 본 연구에서는 bridge 방법에서 발생하는 오차를 줄이기 위한 방법으로, patch 부분에 etch-stop을 제작해 줌으로서 식각 과정에서 발생하는 under-cut을 효과적으로 제거시켰다. Etch-stop은 2장의 mask를 align key를 이용하여 제작하였다. 먼저 산화막이 형성되어 있는 Si 기판위에 mask 1을 이용하여 patch 부분을 lithography 작업하고, 습식 식각 공정을 한 뒤 DLC 필름을 증착시킨다. 다음으로 mask 2를 이용하여 bridge pattern을 제작하고, DLC 필름을 증착시킨 후 lift-off 기술과 산화막 등방식각 공정을 통해 bridge를 제작하였다. 이렇게 제작된 bridge를 통해 필름이 기판에 부착되기 위해 필요한 변형률을 측정하고, 독립적으로 측정된 필름의 잔류응력과 함께 박막의 응력-변형률 관계식에 적용시켜 biaxial elastic modulus, E/(1-v)를 구할 수 있었다. Sidl 첨가된 DLC 필름은 rf-PACVD 장비를 이용하여 증착하였다. 이때 전극과 플라즈마 사이의 바이어스 음전압은 -400V로 합성압력은 10mTorr로 고정하였다. 사용한 반응가스는 벤젠(C6H6)과 희석된 실렌(SiH4:2H=10:90)이며, 희석된 실렌의 첨가량을 조절하여 필름 내에 함유된 Si의 양을 조절하였다. 각각의 조건에서 증착시간을 조절하여 필름의 두께를 조절하였다. 필름의 잔류응력은 압축잔류 응력에 의해 발생한 필름/기판 복합체의 곡률을 laser 반사법을 이용하여 측정하고, 이 결과를 Brenner 등에 의해 유도된 식을 대입하여 계산하였다.

  • PDF

Freehang 방법을 이용한 DLC 필름의 탄성 특성 평가

  • 정진원;이광렬;은광용;고대홍
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.128-128
    • /
    • 2000
  • 박막의 탄성 특성을 평가하는 방법으로 nano-indentation, Brillouin light scattering measurement, ultrasonic surface wave measurement, bulge test, vibration membrane method 등 여러 가지가 제시되어 왔다. 이러한 방법들은 필름의 두께가 일정 두께 이상이 되어야 정확한 측정이 가능한 방법으로 매우 얇은 박막에서도 탄성특성을 평가할 수 있는 freehang, bridge 방법이 제시되었으며, 이 방법은 간단한 식각 공정을 통해 매우 얇은 박막에도 적용시킬 수 있다는 장점을 가지고 있다. 본 연구에서는 아주 얇은 박막에서도 탄성특성을 평가할 수 있는 freehang 방법을 이용하여 순수한 Diamond-like carbon (DLC) 필름과 Sidl 첨가된 DLC 필름의 탄성 특성을 평가하고자 한다. 실험에서 사용한 필름은 rf-PACVD 장비를 이용하여 증착하였다. 이때 전극과 플라즈마 사이의 바이어스 음전압은 -400 Vb로 합성압력은 10mTorr로 고정하였다. 사용한 반응 가스는 벤젠(C6H6), 그리고 벤젠과 희석된 실렌(SiH4 : H2 = 10 : 90)이며, 희석된 실렌의 첨가량을 조절하여 필름 내에 일정량의 Si을 함유시켰다. 각각의 조건에서 증착시간을 조절하여 필름의 두께를 변화시켰으며, KOH(5.6mol) 용액을 이용하여 습식 식각을 함으로써 freehang을 제작하였다. 이때 식각액에 의한 DLC 필름의 손상은 관찰되지 않았다. 필름의 잔류 응력을 측정하기 위해 200$\pm$10 혹은 100$\pm$5$\mu\textrm{m}$ 두께의 얇은 (100) Si wafer를 5$\times$50 mm2의 strip 형태로 절단하여 사용하였다. 필름의 압축 잔류 응력에 의해 발생한 필름/기판 복합체의 곡률은 laser 반사법과 $\alpha$-step profiler를 이용하여 측정하였으며, 이 결과를 Brenner 등에 유도된 식을 이용하여 잔류 응력을 계산하였다. 또한 제작된 frddhang은 광학 현미경과 전자주사현미경에 의해 관찰되었다. 이렇게 제작된 freehang을 이용하여 필름이 기판에 부착되기 위해 필요한 변형률을 측정하고, 독립적으로 측정된 필름의 잔류 응력을 박막의 응력-변형률 관계식에 적용하여 biaxial elastic modulus, E/(1-v)를 구할 수 있었다. 측정 결과 필름의 잔류 응력과 biaxial elastic modulus는 필름의 두께가 감소함에 따라 감소하는 경향을 나타냈으며, 같은 두께의 필름인 경우, 식각 깊이에 따른 biaxial elastic modulus 의 변화를 통해 최적의 식각 깊이를 알 수 있었다.

  • PDF

Research for refining processes to produce high-purity polycrystalline silicon from domestic quartzite mine (국내 규석광으로부터 고순도 실리콘 제조를 위한 정련 공정에 관한 연구)

  • Moon, Byung Moon;Kim, Gangjune;Koo, Hyun Jin;Park, Dong Ho;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.48-48
    • /
    • 2011
  • 2010년 약 19.5 GWp 의 규모로 성장한 태양광 시장의 주요 소재는 실리콘을 이용한 태양전지이며, 고성능 및 고효율 태양전지 시장이 급성장 하였다. 이러한 고품질 태양전지에 사용되는 주요 원료인 9N 급 폴리실리콘은 2008년 4월 $265/kg 까지 상승하였으나, 점차 하향안정세에 있으며, 급속한 가격 경쟁을 통해 당분간 장기공급가가 50$/kg 이하로 하락할 것으로 전망된다. 이러한 실리콘 제조기술 중 가장 많이 사용되는 기술은 Trichloro-silane (TCS) 또는 Mono-silane (MS)를 사용하는 기상법인 일명 Siemens 공정이다. 이러한 기상법의 경우 12N 이상의 초고품질 실리콘 제조가 가능하나, 대규모의 설비투자(1억원/폴리실리콘 1톤)와 높은 에너지(120 kWh/kg)가 요구된다. 이에 최근 기상법이 아닌 야금학적인 정련법에 대한 기술이 개발되고 있으며, 이는 금속 실리콘을 슬래그 처리, 편석 분리, 응고 급랭, 전자빔, 플라즈마 등을 이용하여 정련하는 공정을 말한다. 야금학적 정련법은 순도 면에서 기상법에 비하여 낮은 단점이 있음에도 불구하고, 여러 장점들로 인해 활발히 연구되며 점차 실용화 되고 있는 매우 유용한 기술이다. 야금학적 정련법의 주요 장점은 기상법에 비해 약 25% 정도의 설비 투자비로 가능하고, 금속 실리콘을 직접 사용하며, 에너지 payback이 짧다. 또한, 산 및 염화실렌을 사용하지 않으므로 환경 문제를 적게 야기하고, 생산설비의 확장성도 매우 높다. 본 연구에서는 국내 규석광을 이용하여 일련의 정련 공정을 거쳐 고순도SG(Solar Grade)급 실리콘을 제조하고자 하였다. 실리콘 용융 환원로를 개발하고 순도를 높이기 위해 슬래그정련법을 이용하였으며, 생산된 3N 급의 금속 실리콘을 비기상법정련 방식인 일방향 응고와 플라즈마 정련 및 전자기유도 용해법을 이용하여 고순도의 실리콘을 제조하였다. 본 연구에서는 상업생산을 개시한 외국의 E사와 비교하여 산침출공정을 거치지 않으므로 실리콘회수율 및 환경부하 절감의 장점을 갖고 있으며 최종 순도 실리콘 6N 이상, 보론 함유량 0.2 ppm 이하를 달성하였으며, 기존 기상법 대비 약 20%의 전력 감소와 약 13%의 금속실리콘 원료 절감 효과가 있었다. 저가/고순도 SG급실리콘의 제조기술 개발은 향후 세계 태양광 시장에 대한 경쟁력을 확보하고, 시장 점유율 상승에 기여할 수 있으며, 산업 확대를 통한 주변 산업으로의 파급 효과가 매우 클 것으로 예상된다.

  • PDF

Studies on Polymerization of Metal Anion (III). The Temperature Effect on Polymolybdate Ions Equilibrium in 1 M $NaCIO_4$ Solution (Metal Anion Polymerization에 관한 연구 (제3보). The Temperature Effect on Polymolybdate Ions Equilibrium in 1 M $NaClO_4$Solution)

  • Sang Woon Ahn;Eui Suh Park
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.145-153
    • /
    • 1973
  • The temperature effects on the equilibria between polymolybdatd anions in 1M sodium perchlorate solution has been investigated in the temperature range of 20~50$^{\circ}$C. The polymolybdate anions formed are heptamolybdate ($Mo_7O_{24}^{6-}$) ions and the protonized forms of heptamolybdate ions ($H_LMo_7O_{24}^{(6-L)-}$). The equilibrium constants for the formation of heptamolybdate ions calculated by Sillen's method are as follow;$8H^{+}+7MoO_4^{2-}=Mo_7O_{24}^{6-}+4H_2O$, $k_{7.8}=2.77{\times}10^{53}:20^{\circ}C= 9.29{\times}10^{51}:40^{\circ}C$,$k_{7.8}= 4.22{\times}10^{52}:30^{\circ}C = 9.29{\times}10^{51}:50^{\circ}C$ The enthalpy change for calculated for the above reaction is 31.51 kcal/mole. A method of calculation of the equilibrium constants for the formation of protonized heptamolybdate ions from heptamolybdate ions and hydrogen ions has been derived. The equilibrium constants calculated for the formation of protonized heptamolybdate ions are as follow; $ LH^++ Mo_7O_{24}^{-6} = H_LMo_7O_{24}^{(6-L)-} : L = 1\;or\;2$, $k_1 = 2.31{\times}10^4=2.53{\times}10^4=2.76{\times}10^4= 3.10{\times}10^4$, $k_2 = 6.19{\times}10^7\;20^{\circ}C = 7.80{\times}10^7\;30^{\circ}C = 1.22{\times}10^8\;40^{\circ}C = 2.03{\times}10^8\;50^{\circ}C$The enthalpy change for the following step reactions are as follow;$H^{+}+Mo_7O_{24}^{6-}= HMo_7O_{24}^{5-}\;{\Delta}H^{\circ}=1.90 kcal/mole$, $2H^{+}+Mo_7O_{24}^{6-}=H_2Mo_7O_{24}^{4-}\;{\Delta}H^{\circ}=7.50kcal/mole$

  • PDF