• Title/Summary/Keyword: 실대형실험

Search Result 104, Processing Time 0.027 seconds

Seismic Performance of CFT column to H beam Connections Reinforced with T-stiffeners (T-스티프너로 보강된 CFT 기둥-H형강보 접합부의 내진성능)

  • Kim, YoungJu;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.701-709
    • /
    • 2003
  • The paper presented the seismic performance of T-stiffener moment connections for use in steel moment-resisting frames. The connections were strengthened by welding the vertical and horizontal clement of the T-stiffener to the beam flange and column f1ange. Finite clement analysis and experiments were conducted to determine the behavior of T-stiffener-reinforced connections. The results of the finite element analysis confirmed the effectiveness of the T-stiffener, whose horizontal element lengthened to mitigate local stress concentrations of the beam flange on the horizontal stiffener. Full-scale specimens were also tested cyclically to study hysteresis behavior. The main parameters used were the ratio of the T-stiffener to beam strength and the shape of the horizontal element. As the length of the horizontal element increased, the deformation capacity of the connections enhanced. Likewise, all specimens behaved according to the Ramberg-Osgood curve and showed stable hysteresis behavior.

Flexural Behaviour of Encased Composite Beam with Precast Hollow Core Slabs and Channels (속빈 PC 슬래브와 채널을 사용한 매입형 합성보의 휨 거동)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.493-504
    • /
    • 2008
  • This paper deals with the experimental analysis of the flexural behaviour of encased composite beams with hollow core slabs and channels. The shear force between steel beams and hollow core slabs are transferred by channels. Three full-scale specimens were constructed and tested with different steel beam heights, which were compared with those of previous studies. Based on observation of the experiments, the encased composite beams exhibited full shear connection behaviour without any other shear connectors due to their inherent mechanical and chemical bond stress. Experimental results show a behaviour similar to steel-concrete composite beams with classical connectors: elastic and yield domains, great ductility, flexural failure mode (plastic hinge), low relative movement at steel-concrete interface and all specimens failed in a very ductile manner. Consequently, this study enables the validation of the proposed connection device under static loading and shows that it meets modern structural requirements.

The Suggestion of Seismic Performance Values on Connections for Performance Based Design of Steel Structures (강구조 성능기반설계를 위한 접합부의 내진성능평가치 제안)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Lee, Jin-Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.147-158
    • /
    • 2011
  • The purpose of this research was to analyze the connections of the seismic-performance values for domestic-performance-based designs. Basic research on the performance design method has been increasing of late, along with performance-based organization investigations. These investigations concern the performance level state of steel structure buildings. According to the performance limit state, seismic-performance values should be presented as appropriate steel structure engineering amounts. The first step, based on the full-scale steel structure experiments, involves researching on the making of a basic document. The moment-rotation angle relationship results of the experiment on the moment-frame connection were used to assort the functional and undamaged limits, which were assumed to be less than the yield moment. Moreover, the repairable and safety limits, which were assumed to exist between the yield and maximum moments, were assorted by investigating the accumulated plastic deformation ratio.

Evaluation of Moment Transfer Efficiency According to the Connection Length of the Column Flange and the Beam Web of the H-beam Column Connection (H형강 보-기둥 접합부의 보 웨브 단부접합길이에 따른 모멘트전달효율 평가)

  • Hong, Young-Ju;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.193-203
    • /
    • 2022
  • In this study, in order to compare the seismic performance of steel structure beam-column connection details and non-scallop connection details mainly used in Korea, a full-scale static cyclic loading test and FEM analysis were conducted through the same modeling as the experiment. For quantitative numerical comparison, the strain concentration ratio and moment transfer efficiency used in previous studies were cited. As the welding area of the beam web decreased, the deformation rate of the beam flange increased, and the plastic deformation capacity according to the rotation angle decreased or brittle fracture occurred. Comparing the analysis results with the experimental results, the possibility of brittle fracture tended to increase when the web welding ratio for the total cross-sectional area of H-shaped fell below 60%.

Assessment of Lateral Behavior of Steel-concrete Composite Piles Using Full-scale Model Tests (실대형 모형 실험을 이용한 강관합성 말뚝의 수평 거동 특성 평가)

  • Kwon, Hyungmin;Lee, Juhyung;Park, Jaehyu;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.199-206
    • /
    • 2009
  • This paper presents full scale model tests on the various types of model piles carried out to estimate the behavior of laterally loaded steel-concrete composite piles. Subgrade-reaction spring system was developed to simulate the reaction of ground in laboratory condition. In addition, lateral behavior of piles under working load condition was estimated using composite loading system, which is available for independent loading in vertical and horizontal direction. Steel-concrete composite piles showed higher efficiency in lateral resistance rather than drilled shaft made of reinforced concrete. The lateral resistance of composite pile was larger than the summation of steel pile and concrete pile due to the composite effect by steel casing. The effect of shear key or strength of concrete on the behavior of composite pile was examined. The substitution of reinforcing bar by steel casing was also investigated.

Rainfall and Performance of Soil-Reinforced Regtaining Wall - Investigation on Case Histories (강우와 보강토 옹벽의 거동 - 시공 및 붕괴사례 고찰)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.17-24
    • /
    • 2006
  • This paper presents the two field walls that demonstrate the effect of rainfall on the performance of soil-reinforced retaining wall. A field test wall constructed in Geotechnical Experimental Site at Sungkyunkwan University has been monitored for more than 8 months to study the long-term behavior of soil-reinforced retaining wall. The measured data showed a good correlation between rainfall and wall movement after wall completion. A case of failed soil-reinforced retaining wall also is presented to highlight the effect of rainfall on the performance of soil-reinforced retaining wall. Implications of the findings are discussed.

  • PDF

Safety Evaluation of Tunnel Fire by CFD Modeling (터널화재의 CFD Modeling에 의한 안전성 평가방법)

  • Lee, Chang Wook;Lee, Keun Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.84-84
    • /
    • 2011
  • 터널화재의 위험요소에 대한 해석을 위해서는 실제 상황을 재현한 실대형 실험이 가장 유용하겠지만 현실적으로 시간적, 공간적, 경제적인 제약이 따르기 때문에 CFD Modeling 기술의 이용 및 검증이 필요하고, 실제 상황에 가까운 현상의 재현을 위해서는 시뮬레이션의 정확도에 대한 향상이 필수적이다. 또한, CFD Modeling을 터널화재에 적용할 때 시뮬레이션의 질에 영향을 미칠 수 있는 요소들에 대한 결정이 선행되어야 한다. 우선, 터널의 기하학적 구조와 경계조건의 확립이 필요한데 필요한 정보를 얻기 위해서 어느정도 길이의 터널이 적절한지에 대해 생각할 필요가 있으며, 단면변화에 대한 결정을 통해 모델링을 수행하여야 한다. 모델링 작업이 선행된 후에 화재의 위치, 성장률, 최대 크기, 환기시스템 사항 등의 고려가 필요한데 이러한 조건들은 CFD Modeling의 결과에 직접적인 영향을 주기 때문에 충분한 사전조사가 이루어져야 하고, 각 사항들의 변수를 고려하여 다양한 화재시나리오의 도출이 가능할 수 있다. 마지막으로, 화재에서 발생된 열중 약 30%가 복사에 의해 주위 벽으로 전달될 수 있고 열은 연기가 가득찬 영역내에서 재분배될 수 있는데, 열전달 및 연기의 유동 등에 관한 자료를 기초로 화재현상에 대한 분석이 가능하다. 이러한 과정들을 통해 실제 상황에 가까운 설계화재 시나리오를 예측할 수 있다. 본 연구에서는 우리나라 최장대터널인 죽령터널에 대해 합리적인 가정을 통한 설계화재 시나리오를 기초로 화재시뮬레이션은 FDS(Fire Dynamics Simulator) 프로그램을 사용하여 화재 및 연기의 이동 양상을 분석하고, 피난시뮬레이션은 SIMULEX 프로그램을 사용하여 피난시간을 예측 함으로써 터널화재의 CFD Modeling에 의한 피난안전성을 검토하고자 한다.

  • PDF

Development of Noise-proof Facility Considered with Soundproofing Materials in a Tunnel Blasting (터널 발파에서 방음재질을 고려한 방음문 개발에 관한 연구)

  • Jeoung, Jae-Hyeung;Won, Yeon-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • This study investigated a sound reduction degree by each soundproofing materials and the sound pressure level of a main frequency range to develop soundproofing facilities installed for reducing sound in a tunnel blasting. The frequency range and sound pressure level of soundproofing materials(eg. sand and water etc.) mainly used at a working spot were measured using the experimental apparatus considered with blasting situation. The full scale pilot test was also carried out using developed soundproofing facilities in this study. And the performance of developed soundproofing facilities was analyzed. As a result, the developed soundproofing facilities using water in sound insulation materials could reduce about 10dB(A) of blasting noise in compare with the existing soundproofing facilities.

A numerical study on the optimum spacing of disc cutters considering rock strength and penetration depth using discrete element method (암반강도 및 압입깊이에 따른 디스크커터의 최적간격 산정을 위한 개별요소법 기반 수치해석 연구)

  • Lee, Sang Yun;Song, Ki-il;Jung, Ju Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.383-399
    • /
    • 2020
  • Optimizing the spacing of the disc cutter is a key element in the design of the TBM cutter head, which determines the drilling performance of the TBM. The full-scale linear cutting test is known as the most reliable and accurate test for calculating the spacing of the disc cutter, but it has the disadvantage of costly and time-consuming for the full-scale experiment. In this study, through the numerical analysis study based on the discrete element method, the tendency between Specific Energy-S/P ratio according to uniaxial compression strength and penetration depth of rock was analyzed, and the optimum spacing of 17-inch disc cutter was derived. To examine the appropriateness of the numerical analysis model, the rolling force acting on the disc cutter was compared and reviewed with the CSM model. As a result of numerical analysis for the linear cutting test, the rolling force acting on the disc cutter was analyzed to be similar to the rolling force derived from the theoretical formula of the CSM model. From the numerical analysis on 5 UCS cases (50 MPa, 70 MPa, 100 MPa, 150 MPa, 200 MPa), it is found that the range of the optimum spacing of the disc cutter decreases as the rock strength increases. And it can be concluded that 80~100 mm of disc cutter spacing is the optimum range having minimum specific energy regardless of rock strength. This tends to coincide with the optimal spacing of previously reported disk cutters, which underpins the disk cutter spacing calculated through this study.

Development of penetration rate model and optimum operational conditions of shield TBM for electricity transmission tunnels (터널식 전력구를 위한 순굴진율 모델 개발 및 이를 활용한 쉴드TBM 최적운전 조건 제안)

  • Kim, Jeong-Ju;Ryu, Hui-Hwan;Kim, Gyeong-Yeol;Hong, Seong-Yeon;Jeong, Ju-Hwan;Bae, Du-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.6
    • /
    • pp.623-641
    • /
    • 2020
  • About 5 km length of tunnels were constructed by mechanized tunnelling method using closed type shield TBM. In order to avoid construction delay problems for ensuring timely electricity transmission, it is necessary to increase the prediction accuracy of the excavation process involving machines according to rock mass types. This is important to corroborate the project duration and optimum operation for various considerations involved in the machine. So, full-scale tunnelling tests were performed for developing the advance rate model to be appropriately used for 3.6 m diameter shield TBM. About 100 test cases were established and performed using various operational parameters such as thrust force and rotational speed of cuttterhead in representative uniaxial compressive strengths. Accordingly, relationships between normal force and penetration depth and, between UCS and torque were suggested which consider UCS and thrust force conditions according to weathered, soft, hard rocks. Capacity analysis of cutterhead was performed and optimum operational conditions were also suggested based on the developed model. Based on this study, it can be expected that the project construction duration can be reduced and users can benefit from the provision of earlier service.