• Title/Summary/Keyword: 실내 위치인식 시스템

Search Result 220, Processing Time 0.039 seconds

Improvement of Multilateration using Vector Prediction Algorithm and Kalman Filter (벡터 예측 알고리즘과 칼만 필터를 이용한 다변측량법 개선)

  • Kim, Jung-Ha;Joo, Yang-Ick;Lee, Sung-Geun;Park, Sang-Gug;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2792-2799
    • /
    • 2012
  • Multilateration that consists of three or more fixed nodes has been widely used in the field of indoor real time location system(RTLS). However, when one or two among fixed nodes are partially out of communication reachability due to obstruction and unstable node, it is difficult to obtain an efficient location information. In order to improve the challenges of poor ranging measurements and fluctuations in these environment, this paper presents, based on TOF(Time of Flight), a new algorithm which can reduce the inherent ranging measurements errors in the conventional multilateration using a vector prediction algorithm for the displacement estimation of mobile node and Kalman filter for an efficient distance average. Even if a person moves with mobile node and then it fails ranging measurement from some of fixed nodes, the proposed algorithm using a present and previous measurement value can predict the distance between mobile node and fixed node which fails ranging measurement. The experimental results are shown that the proposed system improves the localization accuracy and efficiency compared with conventional method, respectively.

Error Compensation Algorithm of CSS-Based Real-Time Location Awareness Systems (CSS기반의 실시간 근거리 위치인식을 위한 위치 보정 기법)

  • Han, Sung-Hoon;Choi, Tae-Wan;Ryu, Dae-Hyun;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2011
  • In this paper, we expect that the IEEE 802.15.4a, which is based on CSS, will be used a lot without getting help from other systems or sensors and will make it possible to measure the distance between radio chips in sensor network field, where the location information of the standard have to be based upon. But, the error rate will be high, so we will correct the location of the tag, which will be received by anchor. The technology of location correction we offer is reducing the error rate through calculating the distance from Compensation Tag, and after that, unite the Toa method with the Fingerprint method and adapt them to location correction technology, calculate the location's estimate, and finally abstract the best suited location estimate for Compensation Tag. At last, we offer developing systems as indoor systems of CSS, which pursue the location between nodes, and a thesis about indoor systems and making their accuracy higher.

Error Correction Algorithm of Position-Coded Pattern for Hybrid Indoor Localization (위치패턴 기반 하이브리드 실내 측위를 위한 위치 인식 오류 보정 알고리즘)

  • Kim, Sanghoon;Lee, Seunggol;Kim, Yoo-Sung;Park, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • Recent increasing demand on the indoor localization requires more advanced and hybrid technology. This paper proposes an application of the hybrid indoor localization method based on a position-coded pattern that can be used with other existing indoor localization techniques such as vision, beacon, or landmark technique. To reduce the pattern-recognition error rate, the error detection and correction algorithm was applied based on Hamming code. The indoor localization experiments based on the proposed algorithm were performed by using a QCIF-grade CMOS sensor and a position-coded pattern with an area of $1.7{\times}1.7mm^2$. The experiments have shown that the position recognition error ratio was less than 0.9 % with 0.4 mm localization accuracy. The results suggest that the proposed method could be feasibly applied for the localization of the indoor mobile service robots.

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

An Approach for Localization Around Indoor Corridors Based on Visual Attention Model (시각주의 모델을 적용한 실내 복도에서의 위치인식 기법)

  • Yoon, Kook-Yeol;Choi, Sun-Wook;Lee, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.93-101
    • /
    • 2011
  • For mobile robot, recognizing its current location is very important to navigate autonomously. Especially, loop closing detection that robot recognize location where it has visited before is a kernel problem to solve localization. A considerable amount of research has been conducted on loop closing detection and localization based on appearance because vision sensor has an advantage in terms of costs and various approaching methods to solve this problem. In case of scenes that consist of repeated structures like in corridors, perceptual aliasing in which, the two different locations are recognized as the same, occurs frequently. In this paper, we propose an improved method to recognize location in the scenes which have similar structures. We extracted salient regions from images using visual attention model and calculated weights using distinctive features in the salient region. It makes possible to emphasize unique features in the scene to classify similar-looking locations. In the results of corridor recognition experiments, proposed method showed improved recognition performance. It shows 78.2% in the accuracy of single floor corridor recognition and 71.5% for multi floor corridors recognition.

Research for robot kidnap problem in the indoor of utilizing external image information and the absolute spatial coordinates (실내 공간에서 이동 로봇의 납치 문제 해결을 위한 외부 영상 정보 및 절대 공간 좌표 활용 연구)

  • Jeon, Young-Pil;Park, Jong-Ho;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2123-2130
    • /
    • 2015
  • For such automatic monitoring robot or a robot cleaner that is utilized indoors, if it deviates from someone by replacement or, or of a mobile robot such as collisions with unexpected object direction or planned path, based on the planned path There is a need to come back to, it is necessary to tough self-position estimation ability of mobile robot in this, which is also associated with resolution of the kidnap problem of conventional mobile robot. In this study, the case of a mobile robot, operates indoors, you want to take advantage of the low cost of the robot. Therefore, in this paper, by using the acquisition device to an external image information such as the CCTV which is installed in a room, it acquires the environment image and take advantage of marker recognition of the mobile robot at the same time and converted it absolutely spatial coordinates it is, we are trying to solve the self-position estimation of the mobile robot in the room and kidnap problem and actual implementation methods potential field to try utilizing robotic systems. Thus, by implementing the method proposed in this study to the actual robot system, and is promoting the relevant experiment was to verify the results.

Correction Algorithm for PDR Performance Improvement through Smartphone Motion Sensors (보행자 추측 항법 성능 향상을 위한 스마트폰 전용 모션 센서 보정 알고리즘)

  • Kim, Do Yun;Choi, Lynn
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.148-155
    • /
    • 2017
  • In this paper, we develop a new system to estimate the step count for a smartphone user. The system analyzes data obtained from the accelerometer, magnetic sensor, and gyroscope of an android smartphone to extract pattern information of human steps. We conduct an experiment and evaluation to confirm that the proposed system successfully estimates the number of steps with 96% accuracy when hand-held and 95.5% accuracy when in-pocket. In addition, we found that detection errors were caused by human motions such as touching the screen, shaking the device up and down, sitting up and sitting down, and waving the phone around.

Design of First-Aid Service Support System based on Mobile Motion Recognition (모바일의 모션 인식 기반의 응급 처치 서비스 지원 시스템의 설계)

  • Park, Hung-bog;Seo, Jung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.286-287
    • /
    • 2018
  • As the number of single-person households is increasing in Korea, the demand for emergency support networks for the elderly and women is also growing. To meet the need, systemic solutions, such as a wide distribution of cell phones with embedded motion sensors that can alert the first responders or police in case of health or safety crisis, are regarded as critical issues. This paper introduces a design which registers the user's motions to process emergency reports via a mobile app running in the background. The method offers an affordable solution to reporting emergencies taking place both indoors and outdoors as it does not require an addition of hardware but only simple hand gestures.

  • PDF

Design of ULID-based Location-Sensing Service Model (ULID 기반 위치 인식 서비스 모델의 설계)

  • Nam, Kwang-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.143-154
    • /
    • 2005
  • This paper proposes the location acquisition methods and LBS(location-based services) system using RFID(radio frequency identification) tags with location information in ubiquitous city. Location information is checked using RFID tags attached to various buildings. stores and road signs. And various LBSs are provided based on the location information. Traditionally, when the location information is obtained by a GPS, the precision of the location information may deteriorate due to geographical displacement of a satellite and GPS receivers, for example shadow zone by building, in-door environment, and heavy cloud. The objective of this paper is to provide a ULID(universal location identification) data structure, a ULID-based location acquisition method and an LBS system, in which precise location information is extracted using RFID tags attached to various buildings, stores and road signs and ULID and also danger of information leakage is minimized so that an LBS of ubiquitous environment can be provided to a user.

  • PDF

Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic (지향성 특성을 갖는 UWB 용 테이퍼드 슬롯 안테나 분석)

  • Kim, Sun-Woong;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.691-697
    • /
    • 2016
  • In this paper, we propose the antenna to appropriate for a UWB communication system, and it meets characteristics for location recognition in predetermined range. Proposed tapered slot antenna was designed through the HFSS simulation tool of Ansys. Inc., it was produced by Taconic TRF-45 based on dielectric constant of 4.5, loss tangent 0.0035, thickness 1.62mm. The tapered slot antenna is analyzed the standing wave ratio and reflection coefficient, radiation pattern in the frequency domain. The impedance bandwidth range of the produced tapered slot antenna is from 3.8 ~ 8.9GHz to 5.1GHz, E-plane and H-plane radiation pattern meet directional antenna characteristics for indoor and outdoor location recognition in predetermined range. The antenna gain is 7.4 dBi(6GHz)in the simulation, the result of measurement demonstrated 7.4 dBi(6 GHz) of antenna maximum gain. Proposed tapered slot antenna meets UWB communication system but simulated and measured results were slightly different.