• Title/Summary/Keyword: 실내음향

Search Result 280, Processing Time 0.031 seconds

Leakage Localization with an Acoustic Array that Covers a Wide Area for Pipeline Leakage Monitoring in a Closed Space (닫힌 공간에서의 광역배관 누출 감시를 위한 배열센서를 이용한 누설 위치 검출)

  • Park, Choon-Su;Jeon, Jong-Hoon;Park, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.422-429
    • /
    • 2013
  • It is of great importance to localize leakages in complex pipelines for assuring their safety. A sensor array that can detect where leakages occur enables us to monitor a wide area with a relatively low cost. Beamforming is a fast and efficient algorithm to estimate where sources are, but it is generally made use of in free field condition. In practice, however, many pipelines are placed in a closed space for the purpose of safety and maintenance. This leads us to take reflected waves into account to the beamforming for interior leakage localization. Beam power distribution of reflected waves in a closed space is formulated, and spatial average is introduced to suppress the effect of reflected waves. Computer simulations and experiments ensure how the proposed method is effective to localize leakage in a closed space for structural health monitoring.

Investigation into influence of sound absorption block on interior noise of high speed train in tunnel (터널 내부 도상 블록형 흡음재의 고속철도차량 내부 소음에 미치는 영향에 대한 고찰)

  • Lee, Sang-heon;Cheong, Cheolung;Lee, Song-June;Kim, Jae-Hwan;Son, Dong-Gi;Sim, Gyu-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.223-231
    • /
    • 2018
  • Recently, due to various environmental problems, blast tracks in tunnel are replaced with concrete tracks, but they have more adverse effects on noise than blast tracks so that additional noise measures are needed. Among these measures, sound-absorbing blocks start to be used due to its easy and quick installation. However, the performance of sound absorption blocks need to be verified under real environmental and operational conditions. In this paper, interior noise levels in KTX train cruising in Dalseong tunnel are measured before and after the installation of sound-absorbing blocks and the measured data are analyzed and compared. Additionally, noise reduction are estimated by modeling the high speed train, the tunnel and absorption blocks. Measurement devices and methods are used according to ISO 3381 and the equivalent sound pressure levels during the cruising time inside the tunnel are computed. In addition to overall SPLs(Sound Pressure Levels), 1/3-octave-band levels are also analyzed to account for the frequency characteristics of sound absorption and equipment noise in a cabin. In addition, to consider the effects of train cruising speeds and environmental conditions on the measurements, the measured data are corrected by using those measured during the train-passing through the tunnels located before and behind the Dalseong tunnel. Analysis of measured results showed that the maximum noise reduction of 6.8 dB (A) can be achieved for the local region where the sound-absorbing blocks are installed. Finally, through the comparison of predicted 1/3-octave band SPLs for the KTX interior noise with the measurements, the understanding of noise reduction mechanism due to sound-absorbing blocks is enhanced.

The Active Noise Control in Harmonic Enclosed Sound Fields (I) Computer Simulation (조화가진된 밀폐계 음장에서의 능동소음제어 (I) 컴퓨터 시물레이션)

  • Oh, Jae-Eung;Lee, Tae-Yeon;Kim, Heung-Seob;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1054-1065
    • /
    • 1993
  • A computer simulation is performed on the effectiveness of the active minimization of harmonically excited enclosed sound fields for producing global reduction in the amplitude of the pressure fluctuations. In this study for the appreciable reductions in total time averaged acoustic potential energy, $E_{pp}$, the transducer location strategies for three dimensional active noise control is presented based on a state space modal which approximates the closed acoustic field.In this study, the above theoretical basis is used to investigate the application of active control to sound fields of low modal density. By the used of room-like 3-dimensional rectangular enclosure it is demonstrated that the reductions in $E_{pp}$ can be achieved by using a single secondary source, provided that the source is placed within the half a wavelength from the primary source and placed away from nodal line of the sound field. Concerning the reductions in $E_{pp}$ by minimzing the pressure in sound fields by the use of 3-dimensional rectangular enclosure, the effects of the number of sensors and the locations of these sensors are investigated. When a few modes dominate the response it is found that if only a limited number of sensors are located away from nodal line and located at the pressure maxima of the sound field such as at each corner of a rectangular enclosure.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

Laboratory Evaluation of Soil Permeability for Sand Using Biot's Acoustic Wave Propagation Theory (Biot 음향 전파 이론을 이용한 실내 사질 시료의 투수계수 산정)

  • Kim, Jin-Won;Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.5-12
    • /
    • 2008
  • Biot proposed the frequency dependent formulation for the propagation of elastic waves in saturated media based on the coupled theory mixtures. Based on Biot theory, a special frequency called 'the characteristic frequency' contains unique information of the permeability of soils. The characteristic frequency is measured from I/Q (inverse quality factor) versus frequency curve by an acoustic sweep test, and the permeability of soils is computed from Biot equation. In this paper, laboratory tests are performed at The University of Mississippi using a large test box. The measured characteristic frequency is consistently obtained at 3500 Hz for mortar sands. The computed permeability of mortar sands based on Biot equation turned out 2.01 $10^{-4}m/sec$, while the permeability from the laboratory constant head test turned out 1.49 $10^{-4}m/sec$. This paper addresses the theoretical background and experimental procedure of this technique.

A Study on Valuation of Acoustic Performance for Indoor Swimming Pool utilizing Auralization (가청화를 이용한 실내수영장의 음향 성능평가에 관한 연구)

  • Jung, Chul-Woon;Kook, Jung-Hoon;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.720-724
    • /
    • 2007
  • Recently, in accordance with increase of the desire for Sports for All(Life Sports), the swimming pools in many areas are under construction. However, since they used many of the reflexible finish-materials on account of the characteristics of hydrophilic space, most of the Indoor Swimming Pools are generating the excessive reverberation. Such reverberation is bringing about the problem that obstructs the oral communication between the coach and the player, and the Clearness of Sound, besides the sport activity. On this viewpoint, on the object of the actually built indoor swimming pool, after the conduct of an optimized acoustics design by the remodeling through a computer simulation, and by carrying out the Psycho-Acoustics Experiment utilizing of Auralization Technique which is able to experience Virtual Sound Field at the stage of designing, then this thesis has attempted to appraise on the acoustic condition after the completion of construction. It is considered that such result of the study could be utilized as the useful data that enables to improve the curtailment effect of construction cost as well as the acoustic capability, by means of the presupposition control on the acoustic problem from the stage of design, for the occasion when the similar indoor swimming pool is planning to build, henceforth.

  • PDF

An Experimental Research on the Room Acoustical Environment of the Elementary School Classrooms (초등학교 교실의 음환경 평가에 관한 실험적 연구)

  • Haan, Chan-Hoon;Moon, Kyu-Chun
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.11 no.1
    • /
    • pp.5-14
    • /
    • 2004
  • Since 1990s in Korea, elementary school classrooms have been designed toward open education system in pursuit of variety of educational purpose. Also, the architectural designs of schools have been acomplished for individual school not based on the standard design code. The present paper aims to investigate the acoustic environment of existing classrooms and to compare the sound insulation capacity between the ordinary classrooms and the newly built classrooms for open education. The current acoustical situation of elementary classrooms was analyzed using field measurements and questionnaire survey. In order to this, Three elementary schools were selected which were built in 1978, 1996 and 2000 respectively. Room acoustical parameters including Reverberation time(RT), Definition(D50), Speech Intelligibility(RASTI), Transmission loss(TL) and STC were measured in a classroom in each elementary school classroom. Each measurement was undertaken with the windows and doors being open or closed. As the result, it was found that the transmission loss between rooms in open classrooms is, $5{\sim}6dB$ in average, inferior than the ordinary classrooms. The RASTI of 0.70 was measured in newly built classrooms which is better than old classrooms(0.70) and open classrooms(0.73). This was shown as same in the speech definition measurements. This results from the condition of sealing and airtightness of classrooms and floor materials. The results denote that open classrooms have poor acoustic condition in sound insulation and speech intelligibility.

Study on the Estimation of Acoustic Behavior of the Automobile Interior Materials Using FEM and SEA (FEM.SEA기법을 이용한 흡.차음재의 음향 변수의 차량실내음압에 미치는 영향에 관한 연구)

  • Kim, Kwan-Ju;Lee, Geun-Ho;Kim, Hyun-Jun;Lee, Won-Ku
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.378-385
    • /
    • 2009
  • In establishing silent environment such as automobile and industrial instrument, the roles of the insulating materials are critical. The proper and effective positioning of insulating materials is essential in the field of noise as well as in designing silent automobile. In this paper, we proposed the systematic and efficient scheme for optimizing complete automotive interiors for noise control. In order to attain this purpose, following analysis has been carried out: First, measuring the Biot parameters of insulating materials and the transmission loss with reflecting the appropriate arrangement of insulating materials has been experimented. In addition, we made comparison among transmission loss by the tools of analysis and verification, experimental value under consideration of various situations of automobile and analysis by the SEA.

Improved Design Process for Interior noise in Passenger Vehicles (자동차 실내소음을 위한 개선된 설계 프로세스)

  • Kim, Hyo-Sig;Kim, Heon-Hee;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.974-979
    • /
    • 2008
  • A design process for the structure-borne noise in a passenger vehicle is presented. The proposed process is improved from the previous one. The major difference between the current and last ones is that most of the countermeasures should be developed before fixing a tool for structural parts. This is requested for QCDP(Quality, Cost, Delivery and Productivity) by the design engineers. The proposed one consists of 4 steps: Problem definition, Cause analysis, Development of counter-measure and Validation. Based on the general rule: divide and conquer, the complex problem can be simplified into a few critical sub-systems through the first step: Problem definition. Secondly, the critical causes can be identified for the critical sub-systems through the second step: Cause analysis. Thirdly, effective countermeasures are investigated and produced through the third step: Countermeasure development. The proposed countermeasures are finally validated in the forth step: Validation.

  • PDF

Optimal Design of a Piezoelectric Smart Structure for Cabin Noise Control (실내 소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;이중근;김재환;최승복;정재천
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.428-434
    • /
    • 1998
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectirc actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction. To see the robustness of the optimally designed result, the configuration is used to examine the noise reduction at different frequencies. By adjusting the gain at each frequencies, it is possible to reduce the noise in comparison with the result when the actuator is not activated.

  • PDF