• 제목/요약/키워드: 실내설정온도

검색결과 92건 처리시간 0.022초

Temperature Control Simulation for Greenhouse with Pipe Heating System (온수난방시스템 온실의 온도제어 시뮬레이션)

  • 민영봉;정태상;하종규
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 한국생물환경조절학회 1998년도 임시총회 및 학술논문발표요지
    • /
    • pp.5-10
    • /
    • 1998
  • 최근 온실에 온수 보일러를 설치하여 실내를 가온하는 시스템이 많이 도입되고 있다. 이들 장치들은 설정된 실내온도를 맞추기 위한 온도 제어장치가 부가되어 있지만, 대부분 ON-OFF제어 시스템을 구성하고 있기 때문에 온도 진폭의 현상이 발생하여 온도 제어 정밀성이 떨어지고 에너지소비도 많다. 이 문제점을 해결하기 위하여는 보일러 온수저장조와 온설 내 방열관 사이에 삼방변을 설치하고 설정온도, 실내온도 및 외기온을 비교하여 삼방변의 위치를 조절하여야 한다. (중략)

  • PDF

Building Indoor Temperature Control Using Control Horizon Method in Cooling Systems (냉방시스템 제어구간설정 방법을 이용한 건물 실내온도 제어)

  • Boo, Chang-Jin;Kim, Jeong-Hyuk;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제13권10호
    • /
    • pp.4902-4909
    • /
    • 2012
  • In this paper, the TOU tariff's based building indoor temperature control algorithm in cooling systems is proposed using control horizon method. A control horizon switching method and linear programming algorithm is used for optimal control, and both TOU and peak tariffs are included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed algorithms.

An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index (PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션)

  • Seong, Nam-Chul;Yoon, Dong-Won
    • Land and Housing Review
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 2010
  • Thermal comfort provide satisfaction of thermal environment and affects productivity of occupants in residential building. However, temperature control can not provide the thermal comfort at all the time. because thermal comfort is influenced by many environmental variables such as temperature, relative humidity, air velocity, radiation temperature, activity level and clothing insulation. The purpose of this study is that predicted mean vote(PMV) index is used as control. And, Thermal comfort is evaluated both PMV control and temperature control by simulation. Each other cases were compared, in which set-point temperatures of $22^{\circ}C$ and $24^{\circ}C$ and, set-point PMV index through the respective heating season in the simulation. The results show that PMV control is better to maintain comfort state and save energy than temperature control.

Temperature Control of Greenhouse Using Ventilation Window Adjustments by a Fuzzy Algorithm (퍼지제어에 의한 자연환기온실의 온도제어)

  • 정태상;민영봉;문경규
    • Journal of Bio-Environment Control
    • /
    • 제10권1호
    • /
    • pp.42-49
    • /
    • 2001
  • This study was carried out to develop a fuzzy control technique of ventilation window for controlling a temperature in a greenhouse. To reduce the fuzzy variables, the inside air temperature shop was taken as one of fuzzy variables, because the inside air temperature variation of a greenhouse by ventilation at the same window aperture is affected by difference between inside and outside air temperature, outside wind speed and the wind direction. Therefore, the antecedent variables for fuzzy algorithm were used the control error and its slop, which was same value as the inside air temperature slop during the control period, and the conclusion variable was used the window aperture opening rate. Through the basic and applicative control experiment with the control period of 3 minutes the optimum ranges of fuzzy variables were decided. The control error and its slop were taken as 3 and 1.5 times compared with target error in steady state, and the window opening rate were taken as 30% of full size of the window aperture. To evaluate the developed fuzzy algorithm in which the optimized 19 rules of fuzzy production were used, the performances of fuzzy control and PID control were compared. The temperature control errors by the fuzzy control and PID control were lower than 1.3$^{\circ}C$ and 2.2$^{\circ}C$ respectively. The accumulated operating size of the window, the number of operating and the number of inverse operating for the fuzzy control were 0.4 times, 0.5 times and 0.3 times of those compared with the PID control. Therefore, the fuzzy control can operating the window more smooth and reduce the operating energy by 1/2 times of PID control.

  • PDF

Evaluation of Thermal Comfort for the Vertical Room Air Temperature Difference and for the Control of Air Stream based on Physiological Signal Analysis (실내 상하온도차와 기류방식 제어에 따른 온열쾌적성 평가를 위한 생리신호분석)

  • 이낙법;임재중;배동석;금종수;최호선;이구형
    • Science of Emotion and Sensibility
    • /
    • 제2권1호
    • /
    • pp.147-155
    • /
    • 1999
  • 온열쾌적감에 영향을 주는 중요한 요인들로는 온도, 습도, 기류 등의 물리적 요인과 성별이나 체질 등 뿐만 아니라 온열환경에서 느끼는 인간의 감성적인 측면도 요인으로 작용한다. 본 연구에서는 여러 가지 온열 환경 중에서 실내의 상하온도차와 기류방식의 제어에 따른 생체반응의 변화, 및 감성의 변화를 관찰하여 온열환경에 따른 인간의 온열쾌적감을 평가하기 위해 생리신호를 측정, 분석하였다. 인간에게 가장 쾌적함을 주는 최적의 실내 상하온도차와 기류제어방식을 구현하기 위한 평가방법으로 MST(mean skin temperature)분석 및 HRV(heart rate variability) 분석과 EEG 주파수 스펙트럼 분석을 시행하였다. 그 결과 실내의 상하온도차는 23$^{\circ}C$의 머리부위 온도에서 발 부위와의 온도차가 -3$^{\circ}C$일 때 가장 쾌적한 조건으로 나타났고, 기류제어방식은 감성기류조건에서 가장 쾌적함을 보였다. 본 연구를 통해 실내의 상하온도차와 기류방식에 대한 온열환경의 쾌적조건을 설정하였고, HRV 분석과 EEG의 주파수 분석이 주판신소설문평가와 유의한 결과를 나타내어 이러한 생리신호의 분석이 인간의 감성적 측면을 고려한 온열쾌적성을 펑가하는데 보다 객관적이고 신뢰성 있는 평가지표로 이용될 수 있음을 제시하였다.

  • PDF

Experimental Study on the Operating Characteristics of a Solar Hybrid Heat Pump System according to Indoor Setting Temperature (실내설정온도에 따른 태양열 하이브리드 열펌프 시스템 운전특성에 대한 실험적 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • 제30권6호
    • /
    • pp.50-58
    • /
    • 2010
  • Experimental study on the operating characteristics of a solar hybrid heat pump system according to indoor setting temperature were carried out during spring and winter season. The system was consisted of a concentric evacuated tube solar collector, heat medium tank, heat storage tank, and heat pump. As a result, the heating load was increased by 21.1% when the indoor setting temperature rose by 2oC for the same ambient temperature. Besides, the spring season had good outdoor conditions compared to the winter season, therefore the heating load was reduced and heat gain by collector increased, relatively. In case of the winter season, the solar fraction was shown less than 10% because the heat losses of system and space increased considerably. The solar fraction decreased significantly as the indoor setting temperature increased.

The Design Criteria of the Indoor Temperature and Humidity for the Prevent Condensation of Small Apartment Buildings (소형 공동주택의 동계 실내온습도 조사를 통한 결로방지 설계 기준온습도 설정방안)

  • Kim, Gil-Tae;Kim, Jong-Yeob;Hwang, Ha-Jin;Kim, Kyoung-Sik
    • Land and Housing Review
    • /
    • 제5권4호
    • /
    • pp.291-296
    • /
    • 2014
  • The apartment buildings were hard to emission of water vapor by reduced infiltration. The purpose of this study was to investigate the generation of indoor temperature and humidity in the recent construction of small size apartment buildings. The temperature and humidity were measured in 3 apartments in Seongnam and Daejeon city. During the winter indoor temperature and relative humidity were measured ranged from 20 to $24^{\circ}C$ and 40 to 60%. Generated humidity caused by various characteristics of the residents, rather than external influences. Compare daytime (6:00 to 22:00) and nighttime (22:00 to 6:00), the temperature is low and absolute humidity is high at nighttime. Condensation is likely to occur at nighttime. Using the cumulative relative frequency and absolute humidity, small apartments design criteria (temperature, relative humidity) can be set.

An Analytical Study on the Optimal Set-point of the Hybrid Plant (복합열원설비 운전온도 최적 설정에 관한 해석적 연구)

  • Jeon, Jong-Ug;Lee, Sun-Il;Lee, Tae-Won;Kim, Yong-Ki;Hong, Dae-Hie;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.352-357
    • /
    • 2007
  • The objective of this study is to find the optimal set-point of a hybrid Plant, which is combined by renewable energy plant of the GSHP(Ground Source Heat Pump) and the conventional plant(chiller, boiler). The work presented in this study was carried out by using the EnergyPlus(Version 2.0). In order to validate the simulation model, field data were measured from a building. The GSHP was used as a base plant and the conventional plant as the assistant plant. Various temperatures were controlled (zone summer set-point, zone winter set-point, chilled water temperature, hot water temperature) to find the optimal set-point temperature of the system. The influence of the various set-points were analyzed seasonally.

  • PDF

Correlation on Compressor Discharge Temperature of System A/C Applying PWM Scroll Compressor in Cooling Mode (PWM 스크롤압축기를 적용한 시스템 에어컨의 냉방운전 시 압축기 토출온도에 대한 상관식 개발)

  • Kwon, Young-Chul;Park, Sam-Jin;Ko, Kuk-Won;Park, Byung-Kwon;Kim, Dae-Hun;Youn, Baek
    • Journal of Energy Engineering
    • /
    • 제15권3호
    • /
    • pp.154-159
    • /
    • 2006
  • An experimental study has been performed to investigate the correlation on compressor discharge temperature of capacity modulated system A/C in cooling mode. Indoor and outdoor temperatures, the cooling capacity, compressor discharge temperature and loading time are measured by the psychrometric calorimeter. The system is controlled by applying the scroll compressor operated by PWM valve and loading duty. With decreasing outdoor temperature, the cooling capacity increases. But, with decreasing indoor temperature, it decreases. According to the increase in outdoor temperature and loading duty, compressor discharge temperature increases. From these experimental data, the correlation on compressor discharge temperature is proposed. The correlation obtained from the present study is agreed with the experimental data within $3^{\circ}C$.

Building Indoor Temperature Control Using PSO Algorithm (PSO 알고리즘을 이용한 건물 실내온도 제어)

  • Kim, Jeong-Hyuk;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제14권5호
    • /
    • pp.2536-2543
    • /
    • 2013
  • In this paper, we proposed the modeling in one zone buildings and the energy efficient temperature control algorithm using particle swarm optimization (PSO). A control horizon switching method with PSO is used for optimal control, and the TOU tariff is included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed algorithms.